Basic Motivations

- Neutron total cross sections on important materials are generally known to $\sim 1\%$.

- The uncertainty in the division between elastic and non-elastic is often 10% or more.
Consider a mono-energetic pulsed neutron source located at the center of a sphere of the material in question.

- The material is a \simfew mean-free-paths thickness
- The neutron energy may be measured by time of flight

Attenuation of the mono-energetic neutrons may be measured by comparing sphere-on to sphere-off.

- This provides a measure of the non-elastic cross section.

Lower-energy neutrons are sensitive to (n, n') cross sections.

This scenario can approximately be realized using the 3H(d, n) reaction with deuteron energies below 0.5 MeV:

- $E_n \approx 14$ MeV
- \approx isotropic
Neutron sources are neither isotropic nor mono-energetic.

For accelerator-based sources, the beam must reach a target at the center of the sphere.

The total path length contributes to the time of flight.

... But we have MCNP simulations!

We have focused on Fe (natural) and the D(d,n) neutron source, with $E_d \approx 7.0$ MeV, that provides $E_n \approx 10$ MeV at 0°.
Edwards Accelerator Laboratory

- 4.5-MV Tandem Accelerator
- Pelletron charging system, upgraded to Alphatross He ion source
- Unique beam swinger and 30-m TOF tunnel
- Specializations: TOF techniques, neutrons
- http://inpp.ohio.edu/~oual/
Beam Swinger

- Up to 30-m flight path
- Very well shielded (4’ concrete)
- Beamline is rotatable: $0^\circ \leq \theta_{\text{lab}} \leq 155^\circ$
Iron Sphere Experiment

- $D(d,n)$ neutron source:
 - $E_d \approx 7.0$ MeV
 - $E_n \approx 10$ MeV at 0°
- 8-m flight path
- NE-213 liquid scintillator
- $0^\circ \leq \theta_{\text{lab}} \leq 155^\circ$
- “small” sphere:
 - 15.0-cm diameter
 - 3.0-cm thickness
- “large” sphere:
 - 21.0-cm diameter
 - 8.0-cm thickness
Gas Cell

tube portion holding gas

gold beam stop

water cooling
gas feed tube
electron suppression cable
Small Iron Sphere

Hole for gas cell insertion
Simulation includes D(d,n) differential cross section, neutron detection efficiency, and many additional effects.
Typical Results

large sphere, $\theta_{\text{lab}} = 30^\circ$

- MCNP simulation includes the ENDF/BVII.1 cross section library for iron.
- This result suggests that ENDF/BVII.1 over-estimates the elastic cross section.
Adjusting the ENDF/BVII.1 56Fe elastic cross section down by 10%, and the inelastic up by 15% (keeping the total cross section constant), leads to a much better description of the experimental data.

Note that systematic errors in the data are estimated to be 3-5%.
Results are published: Sushil Dhakal et al., Nucl. Sci. Eng. 193, 1033 (2019).

Supplementary files include all of the data, as well as the MCNP input file and custom neutron source routine source.f90.

This information is also available in Sushil Dhakal’s thesis:
http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1478097309006943
We are not alone in suggesting these changes:

- The new ENDF/BVIII.0 evaluation.
Future Improvements and Directions

- Utilize longer flight paths.
- More robust time-of-flight calibration.
- Study additional materials:
 - C, Cr, Mn, Ni, Cu, Zr ?
- Partnerships between universities and national laboratories.
Two Workshops this Summer

Ohio University @ Athens, Ohio:

▶ The 2020 R-matrix Workshop on Methods and Applications
 June 22-26, 2020
 http://indico.frib.msu.edu/event/29/overview

▶ T^3 Taking the Temperature: Workshop on Statistical Physics for Astrophysics and Applications
 July 13-16, 2020
 http://inpp.ohio.edu/~T3

▶ Student support available
Thank you for your attention.

Particular thanks to Sushil Dhakal and Tom Massey (and also Steve Grimes, Alexander Voinov, Shamim Akhtar, Anthony Ramirez, and Andrea Richard).

Financial support from the U.S. D.O.E. via DE-NA0001837, DE-NA0002905, and DE-FG02-88ER40387 is much appreciated.