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Basic Motivations

I Neutron total cross sections on important materials are
generally known to ∼ 1%.

I The uncertainty in the division between elastic and
non-elastic is often 10% or more.



Idealized Scenario

I Consider a mono-energetic pulsed neutron source located at
the center of a sphere of the material in question.

– The material is a ∼few mean-free-paths thickness
– The neutron energy may be measure by time of flight

I Attenuation of the mono-energetic neutrons may be measured
by comparing sphere-on to sphere-off.

– This provides a measure of the non-elastic cross section.

I Lower-energy neutrons are sensitive to (n, n′) cross sections.

I This scenario can approximately realized using the 3H(d, n)
reaction with deuteron energies below 0.5 MeV:

– En ≈ 14 MeV
– ≈ isotropic



Real World Scenario

I Neutron sources are neither isotropic nor mono-energetic.

I For accelerator-based sources, the beam must reach a target
at the center of the sphere.

I The total path length contributes to the time of flight.

I . . .

I But we have MCNP simulations!

I We have focused on Fe (natural) and the D(d,n) neutron
source, with Ed ≈ 7.0 MeV, that provides En ≈ 10 MeV at 0◦.



Edwards Accelerator Laboratory

I 4.5-MV Tandem Accelerator
I Pelletron charging system, upgraded to Alphatross He ion source
I Unique beam swinger and 30-m TOF tunnel
I Specializations: TOF techniques, neutrons
I http://inpp.ohio.edu/~oual/

http://inpp.ohio.edu/~oual/


Beam Swinger

I Up to 30-m flight path
I Very well shielded (4’ concrete)
I Beamline is rotatable: 0◦ ≤ θlab ≤ 155◦



Iron Sphere Experiment

I D(d,n) neutron source:
Ed ≈ 7.0 MeV
En ≈ 10 MeV at 0◦

I 8-m flight path
I NE-213 liquid scintillator
I 0◦ ≤ θlab ≤ 155◦

I “small” sphere:
15.0-cm diameter
3.0-cm thickness

I “large” sphere:
21.0-cm diameter
8.0-cm thickness

small sphere



Gas Cell



Small Iron Sphere



D(d,n) Source Yield
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Simulation includes D(d,n) differential cross section, neutron detection efficiency, and
many additional effects.



Typical Results

large sphere, θlab = 30◦
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I MCNP simulation includes the ENDF/BVII.1 cross section library
for iron.

I This results suggests that ENDF/BVII.1 over-estimates the elastic
cross section.



Adjusting the Simulation
large sphere, θlab = 30◦
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I Adjusting the ENDF/BVII.1 56Fe elastic cross section down by
10%, and the inelastic up by 15% (keeping the total cross section
constant), leads to a much better description of the experimental
data.

I Note that systematic errors in the data are estimated to be 3-5%.



ENDF Cross Sections
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Documentation of Findings

I Results are published: Sushil Dhakal et al., Nucl. Sci. Eng.
193, 1033 (2019).

I Supplementary files include all of the data, as well as the
MCNP input file and custom neutron source routine
source.f90.

I This information is also available in Sushil Dhakal’s thesis:
http://rave.ohiolink.edu/etdc/view?acc num=ohiou1478097309006943

http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1478097309006943


56Fe Neutron Cross Section

We are not alone in suggesting these changes:

I Cross section measurements of A.P.D. Ramirez et al., Phys.
Rev. C 95, 064605 (2017).

I Ramsauer model predictions, e.g., R.W. Bauer et al., Phys.
Rev. C 130, 348 (1998).

I The new ENDF/BVIII.0 evaluation.



Future Improvements and Directions

I Utilize longer flight paths.

I More robust time-of-flight calibration.

I Study additional materials:
– C, Cr, Mn, Ni, Cu, Zr ?

I Partnerships between universities and national laboratories.



Two Workshops this Summer

Ohio University
@ Athens, Ohio:

I The 2020 R-matrix Workshop on Methods and Applications
June 22-26, 2020
http://indico.frib.msu.edu/event/29/overview

I T 3 Taking the Temperature: Workshop on Statistical Physics
for Astrophysics and Applications

July 13-16, 2020
http://inpp.ohio.edu/~T3

I Student support available

http://indico.frib.msu.edu/event/29/overview
http://inpp.ohio.edu/~T3
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