

Overestimated uncertainties with ENDF/B-VIII.0

F. Bostelmann, B. J. Marshall, D. Wiarda

WANDA, March 3-5, 2020, Washington, D.C.

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ENDF/B-VIII.0 release

- In 2018, the ENDF/B-VIII.0 library was released
- The library contains many updates in relevant cross section and uncertainty data
- The library is supposed to be a general-purpose library, but:

Mean values

- Nuclear data mean values are adjusted during the evaluation process with respect to ICSBEP* benchmark experiments
- The mean values allow for an accurate prediction of the multiplication factor

Uncertainties

- The covariance data does not reflect the adjustment to ICSBEP* experiments
- Uncertainties for integral quantities such as k-eff are usually overestimated

*ICSBEP: International Criticality Safety Benchmark Experiment Project

Significant changes of important uncertainties

CAK RIDGE

3

Overestimation of uncertainty for criticality experiments

LEU-COMP-THERM:

- Low enriched uranium
- Thermal spectrum
- Compound

All C/E results lie within nuclear data uncertainty band

A 1σ uncertainty band should by definition only include 68.3% of the values

→ The impact of nuclear data uncertainties with respect to ICSBEP integral experiments seems overestimated due to tuning of mean values without adjusting covariances.

CAK RIDGE National Laboratory

Large uncertainties for advanced reactor concepts

Sodium-cooled fast reactor assembly

	Nominal value	Uncertainty
Eigenvalue	1.28167	1.07%
Doppler constant	-300 pcm	5.44%
Na-void worth	6,016 pcm	5.23%

- Large uncertainties for safety-relevant integral quantities for SFRs and other concepts
- Increased relevance for advanced reactors with different materials, geometries, neutron spectra etc.

Need for covariance data adjustment

- Uncertainties in integral quantities related to ICSBEP are seemingly overestimated due to tuning of mean values without adjusting covariances.
- This can have an impact on licensing in case of overly large uncertainties of safety-related parameters
- We need adjusted covariance data to better represent uncertainty in integral quantities
- Unadjusted data is still necessary as basis for evaluators and as basis for adjustment
- New GNDS format will be able to store both types

