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Needed Groundwork

 What common community tools are
needed?

* Modernizing, documenting, and
open sourcing tools

* Improving ease of access
e TALYS is a great example.

* Cleaning up experimental data bases
* EXFOR
* Adding metadata

Pitfalls to be avoided

* Need to enforce reproducibility
through peer review

* ML models represented and
distributed in a standard format.
* Want to augment missing physics

* Favor better physics models over more
complex ML.
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* Mitigating human error in compilation?

Yoo
* |dentifying and quantifying missing P N
systematic errors — | e
e Can we “learn” how to correct them? — | =
—=| L D
* Using ML to prioritize new e Csamm >
measurements

* “Validating” old data
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* Emulation of complex and expensive
model.

e Learning model defects
* Correcting them?

* How can we enhance evaluations with
more fundamental but less precise
models?

e Can we “learn” the intuition behind
past evaluations.
e Codification of senior evaluator intuition.

* Can we apply these ideas/tools to
structure evaluations.

Validation

Applications
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* How can we gauge the correctness of
evaluations and models?

Neudecker
* Does “correctness” have context? ' '
 What about where there is no data? A "F (n, inl)
* Very unstable systems 5
* r-process ; / ]
* Can we optimize new experiments to L S :
maximize new information gained? " ¢feroder 60
e Can we automatic the consistency o .n;de;tELer;yiMew :

checking between models and measure
data?
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e Connect the (unexpectedly) important
features of a reaction to particular
. - 1: Generate model (Monte Carlo or deterministic) of
application. e

3: Perform a gap analysis to investigate if similar Catalog o isper =
benchmarks exist. sensitivity profiles for 4

Loboobob2bbbe

4: Perform optimization to design new experiments that 1100+ experiments
are more sensitive to the application than existing
benchmarks.
* Building application model surrogates I
. . 1 %6Zn (n,2n) H, s e
for uncertainty propagation. | +H =
1000 - 2747005 Kong Hiangahens (1992) 6
g 800 A
* How do we fill in gaps of missing ¥ ool
. . . . — ENDFl/B 8.0
information needed by applications oo e
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* How to address having very little data.
* What is really needed to train a ML model.

* Virtues of expt. data only vs including model data.
e Cautions when physics is unknown.
e Caution when fitting GP (collapsing length scales).

Neural Networks Supervised Generative Reinforcement Deep Q Learning
Learning Modeling Learning Bayesian Optimization



