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Needed Groundwork
• What common community tools are 

needed?
• Modernizing, documenting, and 

open sourcing  tools
• Improving ease of access
• TALYS is a great example.

• Cleaning up experimental data bases
• EXFOR
• Adding metadata

Pitfalls to be avoided
• Need to enforce reproducibility 

through peer review
• ML models represented and 

distributed in a standard format.

• Want to augment missing physics
• Favor better physics models over more 

complex ML.
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• Mitigating human error in compilation?

• Identifying and quantifying missing 
systematic errors
• Can we “learn” how to correct them?

• Using ML to prioritize new 
measurements

• “Validating” old data

Future
• Batch effect mitigation or removal tools to be used by AI/ML
• Such tools / algorithms could be AI/ML methods
• Developed such algorithms for material science and bio-medical domain

• A fully automated NLP pipeline with reviewer user interface
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• NLP can not be 100% accuracy and 
requires human validation
• Intuitive user interface is required 

for expert validation
• Automation can significantly reduce 

manual data extraction burden
• Table and Figure extraction from PDF

Yoo
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• Emulation of complex and expensive 
model.
• Learning model defects
• Correcting them?

• How can we enhance evaluations with 
more fundamental but less precise 
models?
• Can we “learn” the intuition behind 

past evaluations.
• Codification of senior evaluator intuition.

• Can we apply these ideas/tools to 
structure evaluations.

Original

Emulated

N. Schunk
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• How can we gauge the correctness of 
evaluations and models?
• Does “correctness” have context?
• What about where there is no data?

• Very unstable systems 
• r-process

• Can we optimize new experiments to 
maximize new information gained?
• Can we automatic the consistency 

checking between models and measure 
data?

What has been done
Random forests were used successfully to augment expert knowledge in pin-
pointing errors in  nuclear data and benchmark experiments leading to bias in 
simulating criticality benchmarks; E.g.: ML found 19F(n,inl) issue missed by experts
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• Connect the (unexpectedly) important 
features of a reaction to particular 
application.

• Building application model surrogates 
for uncertainty propagation. 

• How do we fill in gaps of missing 
information needed by applications

Hutchinson

66Zn (n, 2n)
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• How to address having very little data.
• What is really needed to train a ML model.

• Virtues of expt. data only vs including model data.
• Cautions when physics is unknown.
• Caution when fitting GP (collapsing length scales).


