Energy Upgrade

Damon Todd

88 Inch Cyclotron, Nuclear Science Division

Lawrence Berkeley National Laboratory

88 Inch Cyclotron

Designed for use as a flexible, light ion accelerator

	Mass numbers	Currents	Energies/nucleon
Super-heavy elements	~40-60	20-40 umA	~5 MeV/u
Neutrons	1-2	<10 umA	~10-60 MeV/u
BASE	~10-208	pA to nA	~5-20 MeV/u

Neutrons

Neutron beams

- Pulsed, high-intensity
- Broad spectral range (0.05 to 62 MeV)
- Variable flux up to $2.75 \cdot 10^{12} n_{\rm o}/sr/s$

Recent work

- Isotope production (e.g. ²²⁵Ac for cancer treatment)
- Scintillator characterization
- Neutron damage studies
- Measurements of:
 - Cross-sections
 - Fission yields
 - Inelastic scattering

	Mass numbers	Currents	Energies/nucleon
Super-heavy elements	~40-60	20-40 umA	~5 MeV/u
Neutrons	1-2	<10 umA	~10-60 MeV/u
BASE	~10-208	pA to nA	~5-20 MeV/u

Expand capabilities:

- More current
- More neutron-rich metals
- Higher energies

	Mass numbers	Currents	Energies/nucleon
Super-heavy elements	~40-60	20-40 umA	~5 MeV/u
Neutrons	1-2	<10 umA	~10-60 MeV/u
BASE	~10-208	pA to nA	~5-20 MeV/u

Expand capabilities:

- More current
- More neutron-rich metals
- Higher energies

Ion source/ovens

3

	Mass numbers	Currents	Energies/nucleon
Super-heavy elements	~40-60	20-40 umA	~5 MeV/u
Neutrons	1-2	<10 umA	~10-60 MeV/u
BASE	~10-208	pA to nA	~5-20 MeV/u

Expand capabilities:

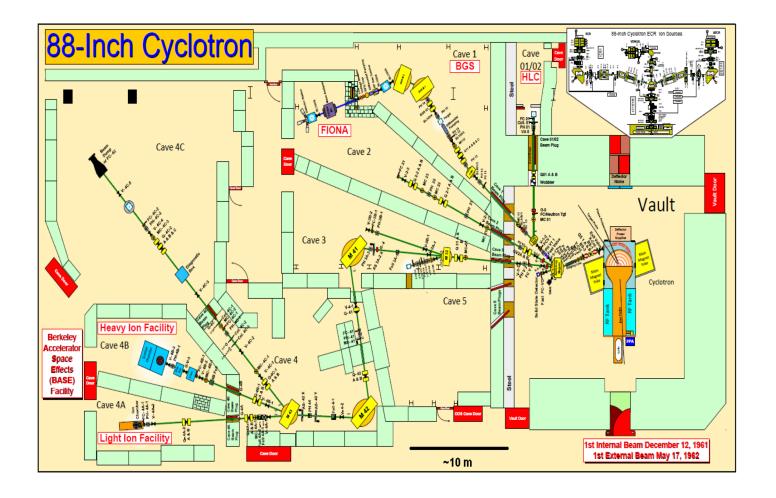
- More current
- More neutron-rich metals
- Higher energies •

Ion source and / or ...

Ion source/ovens

Using ion sources to produce higher energy ion beams

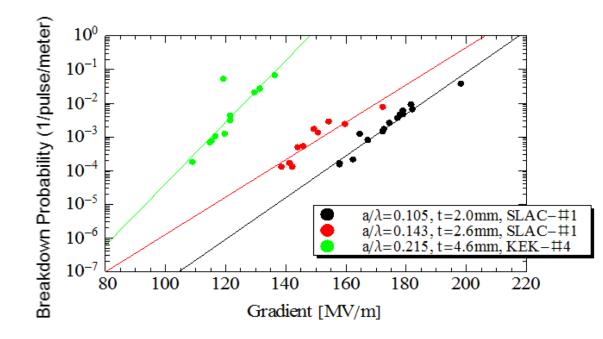
Increase accelerated charge state:

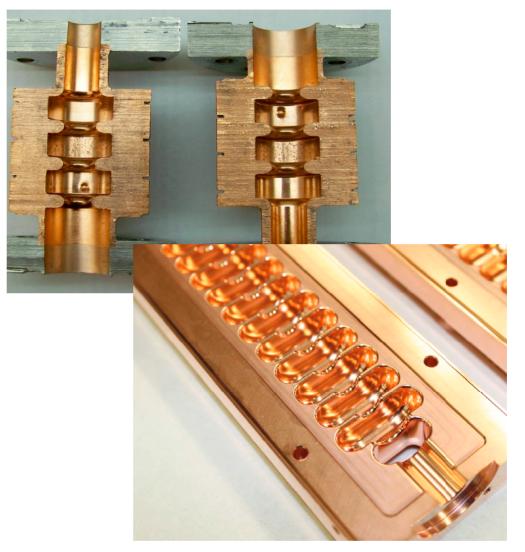

Cyclotrons	Linear Accelerators
$KE \propto Q^2$	$KE \propto Q$

Cyclotron kinetic energy increases: 100s of MeV in 1960s to > 2.5 GeV today with VENUS

Addition of MARS will give both higher charge states and and higher currents

→ However, a hard limit is fully-stripped ions


Higher energy ion beams via post-acceleration

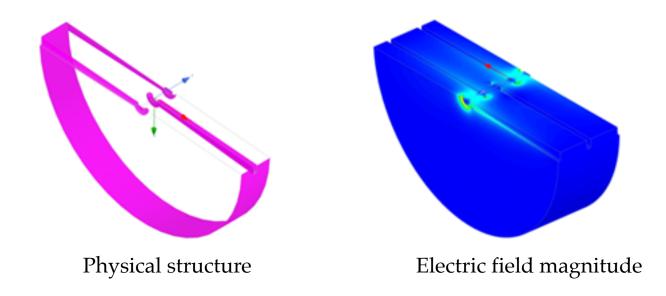


- Concept: use a linear accelerator after the cyclotron to raise beam energies
- Ideally of a size to fit within current building, therefore need high acceleration gradients (e.g. superconducting linac)

Recent advancements in normal-conducting RF cavities

Stanford University has developed high-gradient RF cavities capable of exceeding 100 MV/m

Proposed beam for post-acceleration


Question for Stanford:

could their high-gradient technology be used to accelerate the 10 MeV/nucleon cocktail beam to 25 MeV/nucleon over 6 m?

Why 10 MeV/u?

- Spans a very wide mass range:
 - ¹¹B³⁺, ¹⁸O⁵⁺, ²²Ne⁶⁺, ⁴⁰Ar¹¹⁺, ⁶⁵Cu¹⁸⁺, ⁸⁶Kr²⁴⁺, ¹²⁴Xe³⁴⁺, and ¹⁹⁷Au⁵²⁺
- Why 25 MeV/u over 6 m?
 - Small footprint---further acceleration possible
 - Sets a cost for further acceleration
 - Will have produced a beam immediately useful to BASE community (wide mass spectrum can be used at air)

Stanford/LBNL proposal

- 433 MHz traveling wave Interdigital-H (IH) structure
- 29 cm diameter
- 9 MV/m gradient to reach 25 MeV/u over 6 m

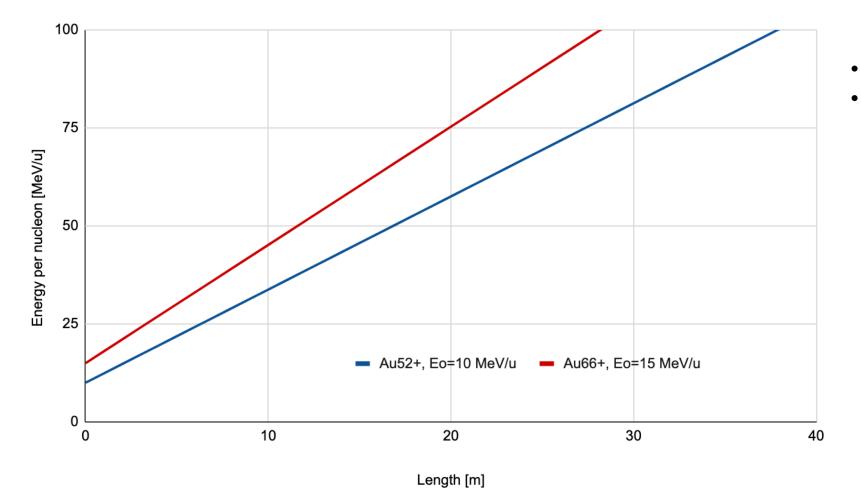
How MARS can help

• 10 MeV/nucleon beam chosen because of presence of gold

E _o	¹⁹⁷ Au	E _f	ΔE
	charge state		
10 MeV/u	52+	25 MeV/u	15 MeV/u

_

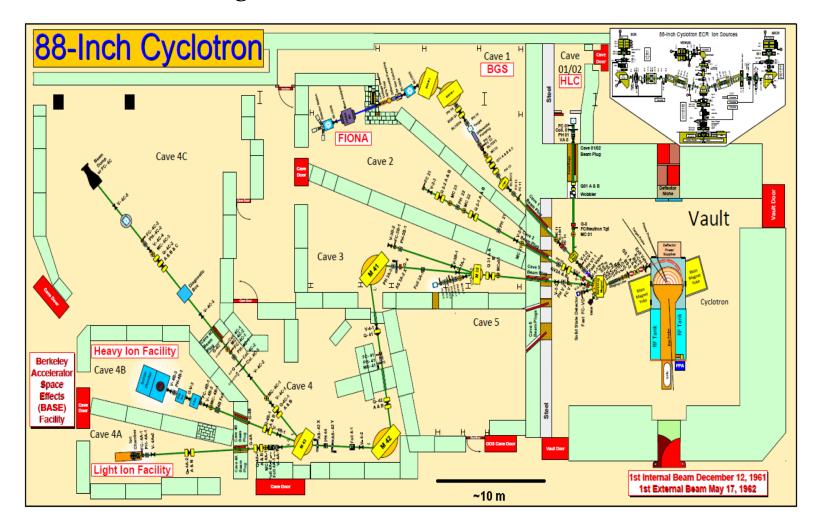
How MARS can help


• 10 MeV/nucleon beam chosen because of presence of gold

Eo	¹⁹⁷ Au charge state	E _f	ΔE
10 MeV/u	52+	25 MeV/u	15 MeV/u
15 MeV/u	66+	34.4 MeV/u	19.4 MeV/u

• Currently we have extracted 61+ from cyclotron using VENUS, but we expect much higher charge states from MARS

Accelerating to yet higher energies



- 9 MV/m acceleration gradient
- Acceleration of either
 - 10 MeV/u cocktail (¹⁹⁷Au⁵²⁺)
 - 15 MeV/u cocktail (¹⁹⁷Au⁶⁶⁺)

High energy ions with a relatively small footprint

• A 10s-of-meter length booster linac could fit within our walls

