Ion Source R/D at the 88-Inch Cyclotron Daniel Z. Xie, Nuclear Science Division

Collaborators: J. Benitez, D. Todd, A. Hodgkinson, L. Phair, C. Lyneis (Retiree)

Ongoing ion source R/D at the 88-Inch Cyclotron

- ✤ MARS-D, a next generation 45 GHz ECR ion source
- Intense Ti ion beams with new HTOs
- Intense 1+/1- ion source
- VENUS with a chamber insert

VENUS: One of the present state of the art ECRISs

The first superconducting ECRIS designed to operate at 28 GHz

Max. Bz field on axis: 4.0 T and Br field at chamber wall: 2.2 T (at the NbTi conductor constraints)

VENIIS

Max. microwave power (28+18 GHz): 12 kW

\sim max. microwave power (20+10 GHz). 12 kw		VENUS	VENUS	VENUS
VENIIS		(28+18 GHz)	(28+18 GHz)	Improv't
VLINUS		(≤2015, 8 kW)	(> 2015, 10 kW)	Present/2015
Prototype source for FRIB	$^{16}O^{6+}$	2.85	4.75	1.67
	O ⁷⁺	0.85	1.90	2.23
	$^{40}{\rm Ar}^{12+}$	0.86	1.06	1.23
	Ar^{16+}	0.27	0.525	1.94
	Ar^{18+}	0.001	0.004	4.0
	$^{78}{ m Kr^{18+}}$		0.77	
	Kr^{23+}	0.088	0.42	4.77
	Kr^{32+}		0.007	œ
	¹²⁹ Xe ³⁸⁺	0.007	0.026	3.71
	Xe^{42+}		0.006	œ
	Xe^{45+}		0.0008	œ
	$^{197}Au^{52+}$	0.0008	0.0047	5.87
	Au^{57+}		0.0013	œ
	Au ⁵⁹⁺		0.0003	œ
	²⁰⁹ Bi ⁵¹⁺	0.0033	0.022	6.67
	Bi ⁵⁷⁺		0.0023	œ
	Bi ⁶¹⁺		0.0001	œ
	*• /	All currents	are in unit of	femAs

Milestone: ²³⁸U³³⁺: 0.45 emA ~ 13.6 pµA

Recently added 20 MeV/u cocktail beams up to Xe for BASE

Critical component of a high charge state Electron Cyclotron Resonance Ion Source (ECRIS)

The most critical component of a high charge state ECRIS is a min-B magnetic configuration, typically a superposition of axial mirrors (solenoids) and radial fields (pure sextupoles without axial fields)

Ion Source R&D – MARS magnet for next generation of ECRIS

✤ Two pathways for a next generation ECRIS operating at ~ 45 GHz:

1. Replace the sc conductors used in the existing coil geometry with higher current versions, (e.g., Nb₃Sn conductor).

- Unproven magnet reliability
- Condutor heat-react and brittleness result in much more complex coil fabrication
- Conductor's poor quench propagation requires very demanding quench protection system

MARS leads to:

Office of

Science

- Well proven NbTi magnet reliability
- Lower cost for the cold mass
- Better form factor for field utilization
- Simplified interaction patterns and lower forces

Critical challenge is winding a closed-loop-coil but coil fabrication has already been demonstrated (2017)
 MARS is the better pathway toward a next generation ECR ion source.

Comparison of the max. Stress (Von Mises) on coils in different magnet geometries

	FRIB VENUS ¹ (28 GHz)	IMP FECR ² (45 GHz)	MARS-D ³ (45 GHz)	
Sextupole Coil	~ 140	~ 144	~ 80	
Sextupole coil deformation	Waiting for info	166 um	TBD	
Solenoid coils	~ 90	~ 100	~ 70	
Notes	NbTi magnet. At designed fields using an existing magnet geometry	Nb ₃ Sn magnet. At designed fields using an existing magnet geometry	NbTi magnet. At designed fields using a MARS magnet geometry	

¹: H. Felice, Report on the FRIB VENUS NbTi magnet (Oct 2013) and Intermediate Design Review (Sept 2014).

²: M. Juchno, Report on the IMP 45 GHz ECRIS magnet preliminary design review (Dec 2016).

³: M. Juchno, Preliminary stress analyses on the MARS-based NbTi magnet for a 45 GHz ECRIS. (Nov 2019).

Ion Source R&D – A 45 GHz ECRIS: MARS-D

MARS-Demonstrator: MARS-D, a 4th Generation 45 GHz ECR source

NbTi MARS-magnet-based 45 GHz Electron Cyclotron Resonance Ion Source

A proposal for the development of a 45 GHz ECR ion source: MARS-D submitted to DOE in 2019. Requested Funding \$12.5 M (including \$3.5 M Contingency) FY20-FY24

Office of

Science

- Production of milliamps of CW ion beams up to U of charge state 30+ to 40+
- At intensity of eµAs, U charge state 50+ to 65+

Potential impacts: FRIB, ATLAS, TAMU.....

88-Inch Cyclotron: ~ 30 MeV/u Kr, ~ 25 MeV/u Xe and ~ 15 MeV/u Au for BASE

Intense Ti ion beams with New HTOs

Up to date the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory has accelerated 49 elements (indicated with the red checks), which is more than one half of the natural elements.

Periodic Table of the Elements

	,								. /									
Hydrogen	Key Key												2 Helum					
3 Uthium	4 Atomic # Symbol Beryllum Exact Name									5 Boron	6 Carbon	7 Nitrogen	8 Ø Oxygen	9 Fluorine	10 Neon			
	12 Mg Nagnesium									13 •••	14 Silcan	15 Prosphorus	16 9 5utv	17 Chiurine	18 Argon			
19 Potassium	20 Calcum		21 Scandum	22 •••••	23 Vanadium	24 Coronnium	25 Manganese	26 500	27 Cobuit	28 Nickel	29 Copper	30 Zm	31 Ga Gallum	32 Germanium	33 As Arsenic	34 Selenium	35 Br Bromine	36 Kryston
37 Rb Rubicium	38 Sr Strontium		39 ••••	40 Zromum	41 Nb Nicolum	42 Molybdenum	43 TC Technetium	44 Ru Ruthenium	45 Rh Rhodum	46 Pd Palladum	47	48 Cadmium	49 In Indum	50 Sri	51 Sb Antimony	52 Te Telurum	53 I Iodine	54 Xenon
55 Cs _{Cesium}	56 Ba barium	*	71 Lu Lutetum	72 Hf	73 Tantalum	74 W Tungsten	75 Re Rhenium	76 Os osmium	77 Ir ^{bidum}	78 Pt Patinum	79 40 Geld	80 Hg Mercury	81 TI Thallium	82 Pb	83 Bismuth	84 Po Potonium	85 At Astatine	86 Rn Radon
87 Fr manoum	88 Ra Redum	*	103 Lr Lawrendum	104 Rf Rutherfordium	105 Db	106 Sg Seaborgum	107 Bh	108 Hs Hassium	109 Mt Meitherium	110 Ds	111 Rg	112 Cn Copernicium		114 Fl		116 Lv		
		*	57 Lanthanum	58 Ce cerum	59 Pr Praecodymium	60 Nd	61 Pm Promethium	62 Semantum	63 Eu turspium	64 Gd Gadolinium	65 Terbium	66 Dyspresium	67 Ho	68 Er	69 Tm Thulum	70 Yb vtterbium		
		*	89 Ac Actinium	90 Th Thorium	91 Pa Protectinium	92 Uranium	93 Np Neptunium	94 Pu Putonium	95 Am Americum	96 Cm curium	97 Bk Berkelum	98 Cf californium	99 Es Ensteinium	100 Fm remium	101 Md Mendelevium	102 No Nobelum		

A great variety of ions has been accelerated by the 88-Inch Cyclotron,

thanks a lot to the high temperature ovens for the ECRISs!

Intense Ti ion beams with New HTOs

ECRIS group at LBNL has a long history of developing resistively heated custom-made HTOs that work fine for up to 14 GHz ECRISs.

VENUS, $B_{inj} \sim 3$ T, I ~ 450 A and I ~ 3 cm, $F \sim 40$ N with a complex pattern.

The VENUS' much higher magnetic fields damage the expensive custom-made HTOs (Ta, W and Re, of a small loading volume of V ~ 0.3 cm³, ~ 5 k\$/set).

The ovens lasted hours to a few days at elevated temperature ≥ 1600 °C for the production of mainly ~ 10s eµA ion beams

Durable and large-loading-volume HTOs are needed, especially now to meet the new demands for intense metal ion beams of 100s eµA to provide ~ 1.5 to 2 pµA for the BGS runs.

Office of

Science

Intense Ti ion beams with New HTOs

Strategy: Use as many commercially available heaters as possible to lower the cost and as low heating currents as possible.

W or Ta folded boat (0.010"-0.015" thick, ~ \$30/boat)

Loading Volume: 2 cm³, a factor of ~ 6 larger

Tests have shown these boat ovens be able to against the VENUS' strong magnetic fields for days without severe damage and can be reused.

Consumption of Ti	Max. I of Ti ¹¹⁺	Injected into 88"	Total Extracted	Flux (pµA)	MeV/u	
30 - 50 mgs/h	120 eµA	68 eµA	6.5 eµA	~ 0.6	~ 5	

- Issues: Poor long-term stability and high consumption (a factor of ~ 10
 20 higher than the custom made cylindrical HTOs).
- Remedies to be carried out: Guide the vapor right into the plasma through optimizing the oven location and vapor exit aperture.

Ion Source R&D – Intense (1+/1-) Ion Source

A Cascade ion source for intense (1+,1-) ion beams

- Cascade arc plasma source can operate at atmospheric pressure Reported plasma flux of 1-10's of amperes per cm²

- Is used for many applications but not yet as ion sources, likely due to beam formation and extraction issues.

- Goal: To produce 300 – 1000 mA singly-charged (1+) or 100s mA of negative (1-) ion beams.

Potential impacts:

- Enhanced isotope production through Electric-Magnetic-Separation by providing more intense ion beams,
- Applications in accelerators and academic and industry.

Office of

Science

A Cascaded arc plasma source

Ion Source R&D – Intense (1+/1-) Ion Source

To carry out the development a test bench is needed. Construction of the test bench progresses is almost completed. Hopefully experiments could be carried out soon.

Ion Source R&D – A Chamber Insert in VENUS

ExB to improve the plasma stability needed for the production of the ultra-high-charge-state ion beams.

A chamber insert to provide spatial plasma biasing is being tested in VENUS

Ion Source R&D – A Chamber Insertion in VENUS

The first oxygen CSD peaked at O⁷⁺ produced by an ECR ion source

Office of

Science

It demonstrated that the chamber insert benefitted the higher charge state oxygen ions more: O⁷⁺ was increased more than 50% at the same input power (1 kW).

Ion Source R&D – A Chamber Insertion in VENUS

Preliminary tests of oxygen with a chamber insert

- The oxygen results are very promising as it enhanced the yields of high charge state O^{7+, 8+} ions by > 50% at 1 kW 18 GHz. It should enhance yields of the ultra-highcharge-state ions as well.
- The complex shape of the chamber insert has upended the ECRIS community's conventional belief that a plasma chamber symmetry is a must in ECR ion sources, e.g., a non-cylindrical chamber can be used in ECRISs.
- ❖ We have plan to demonstrate the benefits of the chamber insertion on the ultra-high-charge-state ions (IP ≥ 3 keV) in the near future. If successful, it will further enhance the energy of the heavier ions from the 88-Inch Cyclotron for BASE.

Office of

Science

Ion Source R&D

Addressing the Critical Challenge of a NbTi MARS Magnet

The critical challenge in construction of a MARS magnet is winding the closed-loop-coil.

To overcome the number one challenge

- A closed-loop-coil prototyping has been successfully completed with rectangular copper wire of about the same size as the intended NbTi wire.
- Winding fixtures and techniques have been developed.

Aluminum mandrel

Winding fixtures hold the Cu wire to the mandrel

Addressing the Critical Challenge of a NbTi MARS Magnet

Milestone:

The prototype copper coil has been wound and vacuum epoxy impregnated.

Field mapping has confirmed the design concept and this copper coil prototyping has demonstrated the fabrication feasibility of a NbTi MARS closed-loop-coil

