

U.S. MAGNET DEVELOPMENT PROGRAM

Update from the US-MDP Modeling Working Group

Compiled by: Diego Arbelaez, Emanuela Barzi, <u>Lucas Brouwer</u>, Lance Cooley, Daniel Davis, Vittorio Marinozzi, Giorgio Vallone 5/13/2020

How do we best protect LTS/HTS hybrid magnets and interpret results?

How does interface behavior in stress managed designs impact training?

Can we better understand and improve LTS/HTS conductor and cable?

Key Questions to Answer in the MDP Modeling Roadmap

2020				2021				2022				
Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	Q 01	Q 02	Q 03	Q 04	QC

HTS toolbox dev.					Hybrid m	nagnet p	rotection					
→	Interfaces - techniques					Stress-managed design opt.						
						Levera	ge high-	performa	ance con	nputing		
Cable stress limitations							С	able opti	mization	/feedba	k	

Connection to MDP Goals and Roadmaps

Interface Modeling

- explores performance limits of Nb₃Sn and HTS in stress managed designs
- guides technology development in epoxies and impregnation techniques

Hybrid Magnet Design and Quench Protection

new LTS/HTS roadmaps quickly converge with hybrid testing becoming a key priority for MDP

LTS/HTS Conductor and Cable Modeling

- guides the design of new Nb₃Sn strand for training reduction (high Cp)
- refines strain limits of Nb₃Sn and HTS magnets
- optimization of LTS/HTS cable for accelerator applications

US Magnet Development Program (MDP) Goals:

GOAL 1:

Explore the performance limits of Nb₂Sn accelerator magnets with a focus on minimizing the required operating margin and significantly reducing or eliminating training.

AL 2:

evelop and demonstrate an HTS accelerator magnet with a self-field 5 or greater compatible with operation machybrid LTS/HTS magnet for fields beyond 16T.

GOAL 3:

Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.

GOAL 4:

Pursue Nb₂Sn and HTS conductor R&D with clear targets to increase performance and reduce the cost of accelerator magnets.

3

Goals/Purpose:

- (1)
- coordinating and working together towards MDP roadmap milestones (2)
- (3) form the basis of future updates to the general MDP (in summary / conclusions)

April 21st, 2020 (kickoff)

- discussion of working group goals and purpose/format for future meetings
- selection of initial topics for upcoming meetings

We plan to announce meeting topics ahead of time so anyone interested from MDP can join – email <u>Inbrouwer@lbl.gov</u> to be placed on mailing list

We now have a dedicated, open, monthly meeting of the modeling working group

detailed discussion of modeling techniques (opportunity to go "into the weeds" and learn from each other)

Topics for the next several months are set

April 21st, 2020 (kickoff)

- discussion of working group goals and purpose/format for future meetings
- selection of initial topics for upcoming meetings

May 19th, 2020 (multi-scale modeling of conductor and strain limits – 1)

- Diego Arbelaez, "multi-scale modeling of conductor and magnets"
- Giorgio Vallone, "a methodology to compute the critical current limit in Nb₃Sn magnets" \bullet

June 16th, 2020 (multi-scale modeling of conductor and strain limits – 2)

Emanuela Barzi, "overview of sub-modelling at FNAL and in the broader community" ullet

July 21st, 2020 (review of multi-physics tools for quench protection studies)

- TBD: (pos. Dan Davis and/or Vittorio Marinozzi), "overview of STEAM/LEDET for quench protection" \bullet
- Lucas Brouwer, "ANSYS user elements for hybrid magnet protection studies" \bullet

Future topics: advanced techniques for interface modeling, simulation tools for HTS, current sharing in HTS cables,

- MDP modeling effort supports general R&D roadmap: interfaces in stress managed coils, conductor development, magnet protection for hybrids, + more
- a standing monthly meeting is established for review of existing work and development of new modeling techniques relevant to the MDP program plan
- meetings are open with upcoming topics advertised to the larger MDP group

Extra

7

Interface Modeling Roadmap Elements and Milestones

Cross-connection to resin and impregnation technology development

US MDP Updated Roadmaps - 2019

Hybrid Modeling Roadmap Elements and Milestones

- Hybrid program "Medium term" (~2022-2024)
- CCT6 and/or SMCT
- 11-12 T in 120 mm aperture
- Towards 5 T field level Target hybrid field: towards 14-15 T
- Goals of the design studies
- Evaluate different designs (both LTS and HTS)
- Investigate alternatives (common-coil and blocks)
- experimental results previous models, scalability, cost.....
- Basically, help converging on all the and/or

U.S. DEPARTMENT OF ENERGY Office of Science

ENERGY Office of Science

Enables study of hybrid designs in comparative roadmap (see Paolo's talk)

Hybrid program and goals of the design studies (II)

CCT Bi2212 and/or SMCT Bi2212 and/or CCT REBCO and/or COMB REBCO

Perform a comparative analysis in view of a 20 T hybrid magnet, considering both modelling and

· Margin, mechanics, field quality, quench protection strategies, fabrication-assembly-loading, performance of

Continue the analysis of challenges specifically of hybrid magnets

Conductor Modeling Roadmap Elements and Milestones

High Cp: timeline and effort is captured by "training rate enhancement" roadmap

sk (xFEM etc.)		
ers	new techniques	
	efficient HPC for HTS FEM	
	development of new experiments with input from modeling	

