

# JAVIER CARAVACA (SNO COLLABORATION) RECENT NEWS FROM THE SNO EXPERIMENT

STAFF MEETING L – JUNE 2020



#### A DAP IA FKUM





#### 





#### UK DAIA FROM



![](_page_3_Picture_3.jpeg)

#### UK JAIA FKUM

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_3.jpeg)

#### SNO TOOK DATA FROM 1999 TO 2006 TO ADDRESS:

![](_page_5_Picture_1.jpeg)

#### EUTRINO PROBLEM

e<sup>-</sup>

\*Cross-section suppressed for non-electron neutrinos

![](_page_5_Picture_4.jpeg)

#### SNO TOOK DATA FROM 1999 TO 2006 TO ADDRESS:

![](_page_6_Picture_1.jpeg)

#### EUTRINO PROBLEM

e<sup>-</sup>

\*Cross-section suppressed for non-electron neutrinos

![](_page_6_Figure_4.jpeg)

![](_page_6_Picture_5.jpeg)

#### SNO TOOK DATA FROM 1999 TO 2006 TO ADDRESS:

![](_page_7_Picture_1.jpeg)

#### EUTRINO PROBLEM

e<sup>-</sup>

![](_page_7_Picture_3.jpeg)

#### $d \rightarrow p + n + \nu - 2.22 \text{ MeV}$

#### BY USING HEAVY WATER, SNO ENABLED NEUTRAL CURRENT NEUTRINO INTERACTIONS → SENSITIVE TO ALL SPECIES

![](_page_7_Figure_6.jpeg)

![](_page_7_Picture_7.jpeg)

![](_page_8_Picture_1.jpeg)

 $e^{-}$ 

![](_page_8_Picture_3.jpeg)

#### $d \rightarrow p + n + \nu - 2.22 \text{ MeV}$

#### **BY USING HEAVY WATER, SNO ENABLED** JTRINO INTERACTIONS $\rightarrow$ SENSITIVE TO ALL SPECIES

![](_page_8_Figure_6.jpeg)

![](_page_8_Picture_7.jpeg)

![](_page_8_Picture_9.jpeg)

![](_page_8_Picture_10.jpeg)

Ve

alped Nobel

The Royal Swedish Academy of Sciences has decided to award the **2015 NOBEL PRIZE IN PHYSICS** 

#### Takaaki Kajita and Arthur B. McDonald For the discovery of neutrino mixing, showing that neutrinos have mass

![](_page_9_Picture_5.jpeg)

#### $n + \nu - 2.22 \text{ MeV}$ p

#### **BY USING HEAVY WATER, SNO ENABLED RINO INTERACTIONS** → **SENSITIVE TO ALL SPECIES**

![](_page_9_Figure_8.jpeg)

![](_page_9_Picture_9.jpeg)

![](_page_9_Picture_11.jpeg)

![](_page_9_Picture_12.jpeg)

#### **NEW COLLABORATORS COMPLETED** NEW ANALYSES USING SNO LEGACY DATA

# **JEJ (AND UULLN**

#### **NEUTRON PRODUCTION IN ATMOSPHERIC NEUTRINO INTERACTIONS**

**NEUTRON PRODUCTION BY COSMIC MUONS** 

LORENTZ SYMMETRY VIOLATION SEARCH

SOLAR HeP NEUTRINO SEARCH

**SELF-INTERACTING DARK MATTER SEARCH** 

#### **NEUTRINO DECAY SEARCH**

11

![](_page_10_Picture_10.jpeg)

# THE SNO DETECTOR IN A NUTSHELL

#### ~9500 PMTS (54% OPTICAL COVERAGE)

![](_page_11_Picture_2.jpeg)

# THE SNO DETECTOR IN A NUTSHELL

#### **EXTERNAL LIGHT WATER VETO**

#### ~9500 PMTS (54% OPTICAL COVERAGE)

# ACRYLIC VESSEL FILLED WITH ~1kt: PHASE I: PURE HEAVY WATER PHASE II: <sup>35</sup>Cl-LOADED HEAVY WATER PHASE III: <sup>3</sup>He COUNTERS DEPLOYMEN

![](_page_12_Picture_4.jpeg)

# THE SNO DETECTOR IN A NUTSHELL

#### **EXTERNAL LIGHT WATER VETO**

#### ~9500 PMTS (54% OPTICAL COVERAGE)

# ACRYLIC VESSEL FILLED WITH ~1kt: PHASE I: PURE HEAVY WATER PHASE II: <sup>35</sup>Cl-LOADED HEAVY WATER PHASE III: <sup>3</sup>He COUNTERS DEPLOYMEN<sup>-</sup>

| lsotope                                      | n absorption<br>σ (barns) | De-excitation E |  |
|----------------------------------------------|---------------------------|-----------------|--|
| н                                            | 0.33                      | 2.2MeV          |  |
| 2 <b>H</b>                                   | 0.5x10 <sup>-3</sup>      | 6.25MeV         |  |
| 35 <b>C</b>                                  | 44.1                      | 8.6MeV          |  |
| Neutron News, Vol. 3, No. 3, 1992, pp. 29-37 |                           |                 |  |

#### **GREAT NEUTRON DETECTION EFFICIEI**

![](_page_13_Picture_6.jpeg)

#### PHYS. REV. D 99, 112007 (2019) **Collaborating with** NEUTRON PRODUCTION IN **M. Smiley ATMOSPHERIC NEUTRINO INTERACTIONS**

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

## ATMOSPHERIC NEUTRINOS

#### THE ATMOSPHERE IS A CONSTANT SOURCE OF $\sim$ GeV neutrinos and anti-neutrinos

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_15_Figure_4.jpeg)

\*Same for electron/tau-neutrinos and anti-neutrinos

 $\begin{cases} n \pi^{\pm,0} \\ X \end{cases}$ 

 $\mu^{-}$ 

![](_page_15_Picture_7.jpeg)

# **ATMOSPHERIC NEUTRINOS ARE A BACKGROUND** FOR NUCLEON DECAY (ND) SEARCHES

THE ATMOSPHERE IS A CONSTANT SOURCE OF  $\sim$  GeV neutrinos and anti–neutrinos

![](_page_16_Figure_2.jpeg)

\*Same for electron/tau-neutrinos and anti-neutrinos

![](_page_16_Picture_4.jpeg)

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

# **ATMOSPHERIC NEUTRINOS ARE A BACKGROUND** FOR NUCLEON DECAY (ND) SEARCHES

THE ATMOSPHERE IS A CONSTANT SOURCE OF  $\sim$  GeV neutrinos and anti–neutrinos

![](_page_17_Figure_2.jpeg)

\*Same for electron/tau-neutrinos and anti-neutrinos

![](_page_17_Figure_4.jpeg)

![](_page_17_Figure_5.jpeg)

p→e+π<sup>0</sup>

![](_page_17_Picture_6.jpeg)

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

# **ATMOSPHERIC NEUTRINOS ARE A BACKGROUND** FOR NUCLEON DECAY (ND) SEARCHES

![](_page_18_Figure_2.jpeg)

\*Same for electron/tau-neutrinos and anti-neutrinos

p

![](_page_18_Picture_4.jpeg)

![](_page_18_Figure_5.jpeg)

![](_page_18_Picture_6.jpeg)

## NEUTRON PRODUCTION IN GeV NEUTRINO INTERACTIONS IS VERY IMPORTANT FOR DIFFERENT REASONS

![](_page_19_Figure_1.jpeg)

#### Fraction with at least one neutron produced

38.4(2.2)% 99.9(0.1)% 88.8(2.0)% 94.7(2.1)% 84.8(1.8)% 82.4(2.3)% 61.5(1.1)% 95.6(0.6)%69.5(0.8)%

1. PROTON DECAY TYPICALLY DOES NOT PRODUCE NEUTRONS: BACKGROUND REJECTION POTENTIAL

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

## NEUTRON PRODUCTION IN GeV NEUTRINO INTERACTIONS IS VERY IMPORTANT FOR DIFFERENT REASONS

![](_page_20_Figure_1.jpeg)

#### Fraction with at least one neutron produced

38.4(2.2)% 99.9(0.1)% 88.8(2.0)% 94.7(2.1)% 84.8(1.8)% 82.4(2.3)% 61.5(1.1)% 95.6(0.6)%69.5(0.8)% 2. NEUTRONS FROM ANTI-v CCQE > NEUTRONS FROM v CCQE

1. PROTON DECAY TYPICALLY DOES NOT PRODUCE NEUTRONS: BACKGROUND REJECTION POTENTIAL

![](_page_20_Picture_6.jpeg)

# NEUTRON PRODUCTION IN GeV NEUTRINO INTERACTIONS IS VERY IMPORTANT FOR DIFFERENT REASONS

**3. STUDYING CROSS-SECTION MODELS** 

![](_page_21_Figure_2.jpeg)

#### Fraction with at least one neutron produced

38.4(2.2)% 99.9(0.1)% 88.8(2.0)% 94.7(2.1)% 84.8(1.8)% 82.4(2.3)% 61.5(1.1)% 95.6(0.6)%69.5(0.8)% 2. NEUTRONS FROM ANTI-v CCQE > NEUTRONS FROM v CCQE

1. PROTON DECAY TYPICALLY DOES NOT PRODUCE NEUTRONS: BACKGROUND REJECTION POTENTIAL

![](_page_21_Picture_7.jpeg)

![](_page_21_Picture_8.jpeg)

![](_page_22_Figure_1.jpeg)

Lepton

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_5.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_24_Figure_1.jpeg)

Lepton GENIE + GEANT4 simulation of atmospheric neutrinos in heavy water

| Origin               | Fraction        |
|----------------------|-----------------|
| Neutrino Interaction | 33.49           |
| Neutron Inelastic    | $34.76^{\circ}$ |

![](_page_24_Picture_4.jpeg)

![](_page_24_Figure_6.jpeg)

![](_page_25_Figure_1.jpeg)

LeptonGENIE + GEANT4 simulation ofatmospheric neutrinos in heavy water

| Origin                  | Fractio |
|-------------------------|---------|
| Neutrino Interaction    | 33.49   |
| Neutron Inelastic       | 34.76   |
| pi/K Inelastic          | 14.56   |
| Proton Inelastic        | 7.90%   |
| Bertini Capture at Rest | 6.11%   |
| $\mu$ Capture at Rest   | 2.14%   |
| Photo-nuclear           | 0.76%   |
| Other                   | 0.28%   |
|                         |         |

![](_page_25_Figure_5.jpeg)

# FUNCTION OF ENERGY

2) PROVIDE FIRST VALIDATION OF MONTE CARLO MODEL

3) EXPLORE NEUTRON DETECTION IMPACT IN NEUTRINO/ANTINEUTRINO SEPARATION

neutrons number Averaged fo

#### GOALS

1) MEASURING THE NEUTRON PRODUCTION FROM ATMOSPHERIC NEUTRINO INTERACTIONS AS A

![](_page_26_Picture_8.jpeg)

![](_page_26_Picture_9.jpeg)

#### SELECT ATMOSPHERIC NEUTRINO INTERACTIONS AND LOOK FOR NEUTRON CAPTURES IN COINCIDENCE Atmospheric event

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_27_Figure_3.jpeg)

#### SELECT ATMOSPHERIC NEUTRINO INTERACTIONS AND LOOK FOR NEUTRON CAPTURES IN COINCIDENCE Atmospheric event

Developed algorithm based on SK and MiniBooNE to reconstruct:

- Lepton position and direction
- Particle type: electron or muon
- Multiplicity: single particle or multi-particle

![](_page_28_Figure_5.jpeg)

Used original SNO algorithms:

![](_page_28_Figure_7.jpeg)

![](_page_28_Picture_8.jpeg)

# MEASURED NEUTRON PRODUCTION COMPATIBLE WITH SK RESULTS

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

#### MEASURED NEUTRON PRODUCTION COMPATIBLE WITH GENIE/GEANT4 MC

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_2.jpeg)

### MEASURED NEUTRON PRODUCTION COMPATIBLE WITH GENIE/GEANT4 MC

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

# BY COSMIC MUONS

#### PHYS. REV. D 100, 112005 (2019)

![](_page_32_Picture_2.jpeg)

![](_page_32_Picture_3.jpeg)

# NEUTRONS PRODUCED BY COSMIC MUONS IS A BACKGROUND FOR A NUMBER OF ANALYSES

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_3.jpeg)

#### SNO CAN IDENTIFY NEUTRONS AFTER COSMIC MUON EVENTS

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_2.jpeg)

#### SNO CAN IDENTIFY NEUTRONS AFTER COSMIC MUON EVENTS

![](_page_35_Figure_1.jpeg)

First measurement of this kind in heavy water

![](_page_35_Figure_3.jpeg)

![](_page_35_Picture_4.jpeg)

#### PHYS. REV. D 99, 032013 (2019)

#### Dr. B. Land

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

# NEUTRINO OSCILLATION BASICS

Neutrino flavors are linear combination of 3 mass states:

$$\left|\nu_{\alpha}\right\rangle = \sum_{i} U_{\alpha i}^{*} \left|\nu_{i}\right\rangle$$

![](_page_37_Picture_3.jpeg)

Oscillation probability from neutrino flavor  $\alpha$  to  $\beta$ :

$$P_{\alpha\beta} = \left| \left\langle \nu_{\beta}(t) | \nu_{\alpha} \right\rangle \right|^2 = \left| \sum_{i} U_{\alpha i}^* U_{\beta i} e^{-im_i^2 L/(2E)} \right|^2$$

 $P_{ee}$  = Probability of an **ve** being detected as **ve**  $P_{ea}$  = Probability of an **ve** being detected as **va** 

![](_page_37_Figure_7.jpeg)

![](_page_37_Picture_8.jpeg)

![](_page_37_Picture_9.jpeg)

#### SINCE NEUTRINOS HAVE MASS. THEY COULD POTENTIALLY DECAY SOLAR NEUTRINOS PROVIDE A LONG BASELINE TO STUDY THIS DECAY

![](_page_38_Figure_2.jpeg)

GOAL: MEASURE LIFETIME OF v<sub>2</sub> MASS STATE BY MEASURING PEE AND PEA SHAPES

![](_page_38_Picture_5.jpeg)

![](_page_38_Picture_6.jpeg)

#### **DEVELOPED MULTIVARIATE LIKELIHOOD FIT TO EXTRACT k<sub>2</sub> PARAMETER**

![](_page_39_Figure_2.jpeg)

![](_page_39_Picture_3.jpeg)

# PHYS. REV. D 98, 112013 (2018) LORENTZ SYMMETRY

![](_page_40_Picture_1.jpeg)

#### LORENTZ VIOLATION IN SOLAR NEUTRINO OSCILLATIONS

![](_page_41_Picture_1.jpeg)

Lorentz violation could result in annual modulation of the solar neutrino survival probability

#### JIVIDUAL LIKELIHOOD FIT

![](_page_42_Figure_1.jpeg)

#### INDIVIDUAL LIKELIHOOD FIT

![](_page_43_Figure_1.jpeg)

| In praction<br>and anal                                   | ce, we fit for: $c_{SNO}^{(4)} = 2$<br>ogously for: $a_{SNO}^{(3)}$ | $\sum_{\alpha\beta} w^{ee}_{\alpha\beta}(c)$ |
|-----------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|
| 10500 11000 11500<br>Julian Day                           |                                                                     |                                              |
| LV signal                                                 | Solar flux $(10^6 \text{ cm}^{-2} \text{ s}^{-1})$                  | sii                                          |
| $7.0^{+7.2+5.9}_{-7.5-6.7} \text{ GeV}^{-1}$              | $5.22 \pm 0.27^{+0.17}_{-0.22}$                                     | 0.497 ±                                      |
| $^{+7.2+2.1}_{-7.3-2.2} \times 10^{-1} \text{ GeV}^{-1}$  | $5.15 \pm 0.26^{+0.14}_{-0.17}$                                     | 0.577 ±                                      |
| $2^{+7.3+2.2}_{-7.4-2.3} \times 10^{-1} \text{ GeV}^{-1}$ | $5.15 \pm 0.26^{+0.14}_{-0.17}$                                     | 0.577 ±                                      |
| $0^{+3.3+2.7}_{-3.4-3.1} \times 10^2 \text{ GeV}^{-2}$    | $5.22 \pm 0.27^{+0.17}_{-0.22}$                                     | 0.537 ±                                      |
| $7^{+6.4+1.7}_{-6.5-1.8} \times 10^1 \text{ GeV}^{-2}$    | $5.15 \pm 0.26 \substack{+0.14 \\ -0.17}$                           | 0.577 ±                                      |
| $2^{+6.5+1.9}_{-6.6-1.9} \times 10^1 \text{ GeV}^{-2}$    | $5.15 \pm 0.26^{+0.14}_{-0.17}$                                     | 0.577 +                                      |
| $8^{+6.5+1.6}_{-6.4-1.8} \times 10^{1} \text{ GeV}^{-2}$  | $5.15 \pm 0.26 \substack{+0.14 \\ -0.17}$                           | 0.577 +                                      |
| $4^{+6.5+1.7}_{-6.6-1.8} \times 10^1 \text{ GeV}^{-2}$    | $5.15 \pm 0.26^{+0.14}_{-0.17}$                                     | 0.577 +                                      |
|                                                           |                                                                     |                                              |

#### NO LORENTZ SYMMETRY VIOLATION OBSERVED SET LIMITS IN 78 PARAMETERS: 38 PREVIOUSLY UNCONSTRAINED AND 16 IMPROVED

![](_page_43_Figure_4.jpeg)

![](_page_43_Figure_5.jpeg)

#### PAPER UNDER INTERNAL REVIEW

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

![](_page_45_Figure_4.jpeg)

![](_page_45_Picture_5.jpeg)

![](_page_46_Picture_0.jpeg)

# SNO IS STILL PRODUCING QUALITY PHYSICS TRON PRODUCTION IN ATMOSPHERIC NEUTRINO

NEUTRON PRODUCTION IN ATMOSPHERIC NEUTRINOINTERACTIONSPHYS. REV. D 99, 11

#### **NEUTRON PRODUCTION BY COSMIC MUONS**

#### **NEUTRINO DECAY SEARCH**

#### LORENTZ SYMMETRY VIOLATION SEARCH PHYS. REV. D 98, 112

HYS. RE

PHYS. RE

#### SOLAR HEP NEUTRINO SEARCH PAPER UNDER INTERN

SELF-INTERACTING DARK MATTER SFARCH

# 2005 (2019)

13 (2019)

# 13 (2018)

AL REVIEW

**ANALYSIS ONGOING** 

![](_page_47_Picture_11.jpeg)

# BACKUP

#### **NEUTRON PROCESSES MONTE CARLO MODEL**

![](_page_49_Figure_1.jpeg)

![](_page_49_Picture_2.jpeg)

#### **PRIMARY NEUTRONS**

**SECONDARY NEUTRONS** 

Neutron capture

![](_page_49_Picture_7.jpeg)

\*NeutronHP model

![](_page_49_Picture_9.jpeg)

Official SNO package: Cherenkov production and detector response

![](_page_49_Picture_11.jpeg)

![](_page_49_Picture_12.jpeg)

![](_page_49_Picture_13.jpeg)

#### ESTIMATED NEUTRON PRODUCTION FROM ATMOSPHERIC NEUTRINOS IN SNO

![](_page_50_Figure_1.jpeg)

![](_page_50_Picture_2.jpeg)

#### **NEUTRINO ENERGY ESTIMATION**

#### **RECONSTRUCT NEUTRINO ENERGY UNDER CCQE HYPOTHESIS**

![](_page_51_Figure_2.jpeg)

![](_page_51_Picture_3.jpeg)

![](_page_51_Picture_4.jpeg)

#### NEUTRON DETECTION EFFICIENCY MODEL VALIDATED WITH A <sup>252</sup>Cf SOURCE 53

<sup>252</sup>Cf source deployed at different radial positions and compared data and Monte Carlo

![](_page_52_Figure_2.jpeg)

Phase I → Agreement @1.9% level

Phase II → Agreement @1.4% level

![](_page_52_Figure_5.jpeg)

![](_page_52_Picture_6.jpeg)

#### **CROSS-SECTION SYSTEMATICS**

| GENIE label       | Physical parame                       |
|-------------------|---------------------------------------|
|                   | Cı                                    |
| MaCCQE            | CCQE axial mass                       |
| MaCCRES           | CC and NC resonance axial mass        |
| MaCOHpi           | CC and NC coherent pion producti      |
| <b>MvCCRES</b>    | CC and NC resonance vector mass       |
| R0COHpi           | Nuclear size controlling pion absor   |
|                   | Rein-Sehgal model                     |
| CCQEPauliSupViaKF | CCQE Pauli suppression via change     |
| AhtBY, BhtBY      | Higher-twist parameters in Bodek-Y    |
| CV1uBY            | GRV98 PDF correction parameter i      |
| CV2uBY            | GRV98 PDF correction parameter i      |
|                   | Η                                     |
| AGKYxF1pi         | Pion transverse momentum in AGK       |
| AGKYpT1pi         | Pion Feynman x for $N\pi$ states in A |
| FormZone          | Hadron formation zone                 |
|                   | Had                                   |
| MFP_pi, MFP_N     | Pion and nucleon mean free path       |
| FrCEx_pi, FrCEx_N | Pion and nucleon charge exchange      |
| FrAbs_pi, FrAbs_N | Pion and nucleon absorption probal    |

| ter                | Nominal value              | $1\sigma$ uncertainty |
|--------------------|----------------------------|-----------------------|
| ross sections      |                            |                       |
|                    | 0.990 GeV                  | -15% + 25%            |
|                    | 1.120 GeV                  | $\pm 20\%$            |
| on axial mass      | 1.000 GeV                  | $\pm 50\%$            |
|                    | 0.840 GeV                  | $\pm 10\%$            |
| ption in           | 1.000 fm                   | $\pm 10\%$            |
|                    |                            |                       |
| es in Fermi level  | 0.225 GeV                  | $\pm 35\%$            |
| Yang model scaling | A = 0.538, B = 0.305       | $\pm 25\%$            |
| n Bodek-Yang model | 0.291                      | $\pm 30\%$            |
| n Bodek-Yang model | 0.189                      | $\pm 30\%$            |
| adronization       |                            |                       |
| (Y model [31]      | See Appendix C of          | Ref. [9]              |
| GKY model [31]     | See Appendix C of Ref. [9] |                       |
|                    | See Appendix C of Ref. [9] | $\pm 50\%$            |
| dron transport     |                            |                       |
| -                  | See Appendix C of Ref. [9] | $\pm 20\%$            |
| probability        | See Appendix C of Ref. [9] | $\pm 50\%$            |
| bility             | See Appendix C of Ref. [9] | $\pm 20\%$            |

![](_page_53_Picture_3.jpeg)

#### **SYSTEMATIC UNCERTAINTIES SUMMARY**

| Systematic parameter                              | $\pm 1\sigma$ uncertainty             | $1\sigma$ fractional effect | Туре                        |
|---------------------------------------------------|---------------------------------------|-----------------------------|-----------------------------|
| High-energy scale                                 | See Fig. 12                           | 0.7%                        | Shift                       |
| High-energy resolution                            |                                       |                             | Smearing                    |
| Assumed $\cos \theta$ in $E_{\nu}$ reconstruction | See Fig. 5                            | < 0.1%                      | Shift                       |
| Particle misidentification                        | $e = 0 \pm 5\%,  \mu = 4 \pm 5\%$     | < 0.1%                      | Shift                       |
| Ring miscounting                                  | $e = 14 \pm 14\%, \ \mu = 11 \pm 9\%$ | < 0.1%                      | Shift                       |
| High-energy radial bias                           | 28 mm                                 | < 0.1%                      | Shift                       |
| High-energy radial resolution                     | 160 mm                                |                             | Smearing                    |
| Quality cuts efficiency                           | 1.47%                                 | 1.5%                        | Reweight                    |
| Neutron capture reconstruction                    | See Sec. VII A 5                      | < 0.1%                      | Shift, smearing, & reweight |
| Neutron detection efficiency                      | See Sec. VII A 6                      | 15.9%                       | Reweight                    |
| Atmospheric neutrino flux                         | ~15%                                  | 1.5%                        | Reweight                    |
| Neutrino interaction model                        | See Table. IV                         | 12.5%                       | Reweight                    |
| MC statistical error                              |                                       | 1.9%                        | Reweight                    |
| Total                                             | •••                                   | 24.9%                       | • • •                       |

![](_page_54_Picture_3.jpeg)

#### **RINGFITTER CALIBRATION**

![](_page_55_Figure_1.jpeg)

![](_page_55_Figure_2.jpeg)

# **NEUTRINO ENERGY RECONSTRUCTION**

The neutrino energy is reconstructed according to the CCQE hypothesis,

![](_page_56_Figure_2.jpeg)

è

#### **NEUTRON DETECTION EFFICIENCY**

![](_page_57_Figure_1.jpeg)

![](_page_57_Picture_2.jpeg)

# **NEUTRON PRODUCTION**

![](_page_58_Figure_1.jpeg)

| aries)      |                        |             |
|-------------|------------------------|-------------|
|             | Neutron origin         | Fraction    |
|             | Neutrino interaction   | 33.0(0.2)%  |
|             | Neutron inelastic      | 34.9(0.2)%  |
|             | $\pi/K$ inelastic      | 15.0(0.1)%  |
|             | Proton inelastic       | 7.3(0.1)%   |
|             | Hadron capture at rest | 6.4(0.1)%   |
| - 1. L      | $\mu$ capture at rest  | 2.20(0.04)% |
| i.<br>Malan | Photonuclear           | 0.90(0.02)% |
|             | Other                  | 0.29(0.01)% |
| 1 (Terr)    |                        |             |
|             |                        |             |
| $10^{3}$    |                        |             |

## v/anti-v STATISTICAL SEPARATION

![](_page_59_Figure_1.jpeg)

# **PRIMARY/SECONDARY NEUTRONS FIT**

PRIMARY/SECONDARY NEUTRON COMPONENTS ARE DIFFERENT FOR CCQE AND NON-CCQE INTERACTIONS

![](_page_60_Figure_2.jpeg)

- Primary neutrons: Best fit MC/Nominal MC = 0.41  $\pm$  0.50 - Secondary neutrons: Best fit MC/Nominal MC = 0.95  $\pm$  0.25 -  $\chi^2$ /dof = 14.4/12

#### HELP DISENTANGLING DIFFERENT NEUTRON ORIGIN THROUGH SHAPE LIKELIHOOD FIT

#### **Best fit**

![](_page_60_Picture_6.jpeg)

#### SNO TOOK DATA FROM 1999 TO 2006 **TO ADDRESS: IHE SOI**

Vτ

#### John Bahcall

e

Bruno Pontecorvo

#### (NC) $n + \nu - 2.22$ MeV

![](_page_61_Figure_6.jpeg)