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} BY USING HEAVY WATER, SNO ENABLED 

NEUTRAL CURRENT NEUTRINO INTERACTIONS → SENSITIVE TO ALL SPECIES
νμ

ντ

SNO TOOK DATA FROM 1999 TO 2006 TO ADDRESS:

For the discovery of neutrino mixing,  
showing that neutrinos have mass

Flux predicted by standard solar model

*Cross-section suppressed for non-electron neutrinos



NEUTRON PRODUCTION IN 
ATMOSPHERIC NEUTRINO INTERACTIONS

NEUTRON PRODUCTION BY COSMIC MUONS

NEUTRINO DECAY SEARCH

LORENTZ SYMMETRY VIOLATION SEARCH

RECENT ANALYSES (AND OUTLINE OF MY TALK):

SNO ANALYSIS REINVIGORATED IN 2015 

NEW COLLABORATORS COMPLETED 
NEW ANALYSES USING SNO LEGACY DATA

SOLAR HeP NEUTRINO SEARCH

SELF-INTERACTING DARK MATTER SEARCH



~9500 PMTS 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THE SNO DETECTOR IN A NUTSHELL

~100 EXTERNAL 
VETO PMTS



ACRYLIC VESSEL FILLED WITH ~1kt: 
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ACRYLIC VESSEL FILLED WITH ~1kt: 
‣ PHASE I: PURE HEAVY WATER 
‣ PHASE II: 35Cl-LOADED HEAVY WATER 
‣ PHASE III: 3He COUNTERS DEPLOYMENT

~9500 PMTS 
(54% OPTICAL COVERAGE)

THE SNO DETECTOR IN A NUTSHELL

GREAT NEUTRON DETECTION EFFICIENCY 

~100 EXTERNAL 
VETO PMTS

Isotope n absorption 
σ (barns) De-excitation E

H 0.33 2.2MeV
2H 0.5x10-3 6.25MeV

35Cl 44.1 8.6MeV
Neutron News, Vol. 3, No. 3, 1992, pp. 29-37

EXTERNAL LIGHT WATER VETO



NEUTRON PRODUCTION IN 
ATMOSPHERIC NEUTRINO INTERACTIONS

PHYS. REV. D 99, 112007 (2019)
Collaborating with 

M. Smiley



ATMOSPHERIC NEUTRINOS

*Same for electron/tau-neutrinos and anti-neutrinos
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THE ATMOSPHERE IS A CONSTANT SOURCE OF ~GEV NEUTRINOS AND ANTI-NEUTRINOS
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Source: ANNIE EoI

MINIMAL 
SUSY 

PREDICTION
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Source: ANNIE EoI

PROTON DECAY → TYPICALLY NO NEUTRONS 
ATMOSPHERIC NEUTRINOS → 70% PRODUCE AT LEAST ONE

MINIMAL 
SUSY 

PREDICTION

*Same for electron/tau-neutrinos and anti-neutrinos

ATMOSPHERIC NEUTRINOS ARE A BACKGROUND 
FOR NUCLEON DECAY (ND) SEARCHES
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THE ATMOSPHERE IS A CONSTANT SOURCE OF ~GEV NEUTRINOS AND ANTI-NEUTRINOS



NEUTRON PRODUCTION IN GeV NEUTRINO INTERACTIONS IS VERY 
IMPORTANT FOR DIFFERENT REASONS

1. PROTON DECAY TYPICALLY 
DOES NOT PRODUCE NEUTRONS: 

BACKGROUND REJECTION POTENTIAL
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NEUTRON PRODUCTION IN GeV NEUTRINO INTERACTIONS IS VERY 
IMPORTANT FOR DIFFERENT REASONS

2. NEUTRONS FROM ANTI-ν CCQE 
> 

NEUTRONS FROM ν CCQE

3. STUDYING CROSS-SECTION MODELS
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BACKGROUND REJECTION POTENTIAL



NEUTRON PRODUCTION MECHANISM IS COMPLICATED
Lepton

ν

Neutron

Neutrino 
interaction

Hadrons
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Final State Interactions

GENIE + GEANT4 simulation of  
atmospheric neutrinos in heavy water
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ν

Neutron

Neutrino 
interaction

Lepton

Hadrons

GENIE + GEANT4 simulation of  
atmospheric neutrinos in heavy water

Final State Interactions
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GOALS 

1) MEASURING THE NEUTRON PRODUCTION FROM ATMOSPHERIC NEUTRINO INTERACTIONS AS A 
FUNCTION OF ENERGY 

2) PROVIDE FIRST VALIDATION OF MONTE CARLO MODEL 

3) EXPLORE NEUTRON DETECTION IMPACT IN NEUTRINO/ANTINEUTRINO SEPARATION
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Run: 10975  GTID: 2896417

T=122.1°
P=13.4°
G=9.0°

T=86.6°
P=-53.7°
G=-0.6°

NEUTRON CAPTURE TIME: 
- HEAVY WATER: ~50ms 
- 35Cl: ~5ms

SELECT ATMOSPHERIC NEUTRINO INTERACTIONS 
AND LOOK FOR NEUTRON CAPTURES IN COINCIDENCE

ATMOSPHERIC EVENT NEUTRON CAPTURE CANDIDATE
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Developed algorithm based on SK and MiniBooNE to reconstruct: 
- Lepton position and direction 
- Particle type: electron or muon 
- Multiplicity: single particle or multi-particle

HEAVY WATER Cl LOADED HEAVY WATER
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SELECT ATMOSPHERIC NEUTRINO INTERACTIONS 
AND LOOK FOR NEUTRON CAPTURES IN COINCIDENCE

Used original SNO algorithms:

ATMOSPHERIC EVENT NEUTRON CAPTURE CANDIDATE
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MEASURED NEUTRON PRODUCTION COMPATIBLE 
WITH SK RESULTS
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MEASURED NEUTRON PRODUCTION COMPATIBLE 
WITH GENIE/GEANT4 MC

CCQE Selection
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MEASURED NEUTRON PRODUCTION COMPATIBLE 
WITH GENIE/GEANT4 MC

CCQE Selection

DATA AND MC AGREE AT 2σ IN THE ENTIRE ENERGY 
RANGE AND FOR ALL SAMPLES 

ANTI-v COMPONENT CAN BE CONSTRAINED 
AT THE 46% LEVEL 

A #NEUTRON CUT CAN ENHANCE THE  ANTI-v 
COMPONENT BY 10%
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NEUTRON PRODUCTION 
BY COSMIC MUONS

PHYS. REV. D 100, 112005 (2019)

E. Callaghan



NEUTRONS PRODUCED BY COSMIC MUONS IS A BACKGROUND 
FOR A NUMBER OF ANALYSES

T=86.6°
P=-53.7°
G=-0.6°

NEUTRON CAPTURE TIME: 
HEAVY WATER: ~50ms 

35Cl: ~5ms

COSMIC MUON EVENT NEUTRON CAPTURE CANDIDATE
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SNO CAN IDENTIFY NEUTRONS AFTER COSMIC MUON EVENTS
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SNO CAN IDENTIFY NEUTRONS AFTER COSMIC MUON EVENTS

Delay [ms]
10 20 30 40 50 60

C
ou

nt
s

1−10

1

10

210

310 Data

MC truth

Delay [ms]
100 200 300 400 500 600

C
ou

nt
s

1−10

1

10

210

Data

MC truth

48.5±1.3 ms

5.29±0.07 ms

Heavy water phase

Cl-loaded phase

Liquid scintillator experiments

First measurement of this kind in heavy water
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NEUTRINO LIFETIME
PHYS. REV. D 99, 032013 (2019)

Dr. B. Land



NEUTRINO OSCILLATION BASICS
Neutrino flavors are linear combination 
of 3 mass states:

Oscillation probability from neutrino 
flavor α to β:

νe

Mostly 
ν2

MSW 
effect

Pee = Probability of an νe being detected as ve 
Pea = Probability of an νe being detected as va
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SINCE NEUTRINOS HAVE MASS, THEY COULD POTENTIALLY DECAY  
SOLAR NEUTRINOS PROVIDE A LONG BASELINE TO STUDY THIS DECAY

Disappearance and appearance probabilities:

No neutrino decay

GOAL: MEASURE LIFETIME OF v2 MASS STATE BY 
MEASURING PEE AND PEA SHAPES 

Neutrino decay factor

Defined mass-scaled lifetime k2
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DEVELOPED MULTIVARIATE LIKELIHOOD FIT TO EXTRACT 
k2 PARAMETER

SNO standalone
SNO + KamLAND + Borexino + 

SAGE + GALLEX +GNO + Homestake

Previous limit
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LORENTZ SYMMETRY 
VIOLATION

PHYS. REV. D 98, 112013 (2018)



LORENTZ VIOLATION IN SOLAR NEUTRINO OSCILLATIONS
Lorentz violation introduces correction factors  
into the solar neutrino survival probability

~ constants at higher energies

y

x

REGION OF INTEREST
Lorentz violation could result in annual modulation  
of the solar neutrino survival probability

ν

ν
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INDIVIDUAL LIKELIHOOD FIT In practice, we fit for:

and analogously for: 

Annual variation
Energy

Radial position

Angle wrt the Sun direction



INDIVIDUAL LIKELIHOOD FIT In practice, we fit for:

and analogously for: 

NO LORENTZ SYMMETRY VIOLATION OBSERVED 
SET LIMITS IN 78 PARAMETERS: 38 PREVIOUSLY UNCONSTRAINED AND 16 IMPROVED

Annual variation
Energy

Radial position

Angle wrt the Sun direction



HEP NEUTRINOS
PAPER UNDER INTERNAL REVIEW



HEP NEUTRINO SEARCH
Last unobserved branch of PP-chain neutrinos 

SNO enables hep-v CC on deuterium  

Main backgrounds are 8B and atmospheric neutrinos

SNO IS EXPECTED TO REACH WORLD LEADING SENSITIVITY 

PAPER UNDER INTERNAL REVIEW
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SUMMARY



NEUTRON PRODUCTION IN ATMOSPHERIC NEUTRINO 
INTERACTIONS

NEUTRON PRODUCTION BY COSMIC MUONS

NEUTRINO DECAY SEARCH

LORENTZ SYMMETRY VIOLATION SEARCH

SOLAR HEP NEUTRINO SEARCH

PHYS. REV. D 98, 112013 (2018)

PHYS. REV. D 99, 032013 (2019)

PHYS. REV. D 99, 112007 (2019)

PAPER UNDER INTERNAL REVIEW

SNO IS STILL PRODUCING QUALITY PHYSICS
STAY TUNED!

PHYS. REV. D 100, 112005 (2019)

SELF-INTERACTING DARK MATTER SEARCH
ANALYSIS ONGOING
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NEUTRON PROCESSES MONTE CARLO MODEL

Neutron

Neutron  
capture

SNOMAN

ν
Neutron

Neutron

Official SNO package:  
Cherenkov production and  

detector response

- Neutrino interaction
- Final State Interactions

- Neutron propagation
- Secondary neutron production
- Neutron capture
- De-excitation gamma emission

SECONDARY NEUTRONSPRIMARY NEUTRONS
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*NeutronHP model



ESTIMATED NEUTRON PRODUCTION FROM ATMOSPHERIC NEUTRINOS IN SNO
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RECONSTRUCT NEUTRINO ENERGY UNDER CCQE HYPOTHESIS
Reconstructed neutrino energy bias

NO ATMOSPHERIC NEUTRINO DIRECTION → GET COS(Θ)/Ε DEPENDENCY FROM MC

σ = 85.0 ± 2.3MeV

Muons

Electrons
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�53NEUTRON DETECTION EFFICIENCY MODEL VALIDATED WITH A 252Cf SOURCE
252Cf source deployed at different 

radial positions and compared data and Monte Carlo

Phase I → Agreement @1.9% level 

Phase II → Agreement @1.4% level
44.3% AVERAGED EFFICIENCY



CROSS-SECTION SYSTEMATICS �54



SYSTEMATIC UNCERTAINTIES SUMMARY �55



Stopping muons

RINGFITTER CALIBRATION
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v/anti-v STATISTICAL SEPARATION
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PRIMARY/SECONDARY NEUTRONS FIT
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Best fit 

- Primary neutrons:      Best fit MC/Nominal MC = 0.41 ± 0.50 
- Secondary neutrons: Best fit MC/Nominal MC = 0.95 ± 0.25 
- χ2/dof = 14.4/12

HELP DISENTANGLING DIFFERENT NEUTRON ORIGIN  
THROUGH SHAPE LIKELIHOOD FIT

PRIMARY/SECONDARY NEUTRON COMPONENTS ARE DIFFERENT  
FOR CCQE AND NON-CCQE INTERACTIONS



THE SOLAR NEUTRINO PROBLEM

John Bahcall Bruno Pontecorvo
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SNO TOOK DATA FROM 1999 TO 2006  
TO ADDRESS:

Flux predicted by standard solar model
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