8-13 September 2013
Asilomar, California
US/Pacific timezone

Neutrino Induced Dimuons and Coherent-Rho in NOMAD

12 Sep 2013, 16:00
Asilomar, California

Asilomar, California

Asilomar Conference Grounds, 800 Asilomar Avenue, Pacific Grove, CA 93950-3704
Oral Neutrino Oscillations/ Neutrino Beam Physics Neutrino Oscillations/ Neutrino Beams IV


Dr Leslie Camilleri (Columbia University)


Neutrino induced charm production, detected via charm's semi-muonic decay, offers the most precise quantification of the strange-sea and the mass-parameter of the charm quark, mc.. We have extracted 15k charm dimuon events in neutrino-Fe interactions in the NOMAD front calorimeter corresponding to a sample of 9M single muon events. The analysis leads to a measurement of the dimuon to single muon rate with a precision of ~2%. The key to this systematic precision is the high-resolution light target (drift chambers) data which yield the energy scale and the pion-induced backgrounds affecting this analysis. Within the NLO QCD formalism, we obtain the strange sea suppression factor of κs= 0.63 +- 0.04(Stat+Syst), and the mc = 1.058 +- 0.059 GeV/c2 (MS-bar scheme). Measurement of neutrino production of coherent mesons uniquely elucidates the space-time structure of the weak current, provides a clear probe to test the conserved vector current (CVC), and conveys the `hadronic-content' of the weak current. Once in every few hundred interactions, a high energy neutrino scatters coherently off the target nucleus producing a Rho meson, emitted collinearly with the incident neutrino, while the nucleus remains intact. Kinematically, the interaction is a very low four-momentum and high hadronic energy transfer process. In Neutral Current (NC) this results in a ρ0 and in Charged Current (CC) in a ρ+, where the two are related via the weak mixing angle. Using the NOMAD light target data, corresponding to a sample of $1.44M νμ-CC events in the energy range 2.5 - 300 GeV, we have conducted analyses of coherent ρ production in NC and CC. Clear signals are observed in both NC and CC. We report the rate of coherent ρ0 and ρ+ with respect to νμ-CC. The precision on coherent ρ+ is the best among all reported neutrino-induced coherent mesons to date.

Primary author

Dr Leslie Camilleri (Columbia University)


Prof. Roberto Petti (University of South Carolina) Prof. Sanjib Mishra (University of South Carolina)

Presentation Materials

There are no materials yet.