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Cosmological information

Cosmological information comes from two sources:

Geometry: tracing the
expansion history
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about 400 million yrs.

Big Bang Expansion

13.7 billion years




* Supernovae

* Gravitational Lensing
e Large-scale structure (BAO)
* Galaxy Clusters



S

Photometric:

* DES: Dark Energy Survey

* PanStarrs: Panoramic Telescope and Rapid Response System
* KIDS: Kilo-Degree Survey

* HSC: HyperSuprime Cam

e LSST: Large Scale Synoptic Telescope

Spectroscopic:
* BOSS: Baryon Oscillation Spectroscopic Survey

 MS-DESI: Mid-Scale Dark Energy Spectroscopic Instrument



1x1 deg? ﬁ‘e{id of view

50,000 galaxies
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e Collect light from galaxies in
several broad-band filters in
optical and near-IR.

e E.g.grizY (DES) + JK (Vista)

e Use flux in each filter to
determine:

- type:star/gal./QSO
- gal. type: spiral,
elliptical, ...

Flux

- (photometric) redshift

4000 6000 8000 10000 12000

e Also have angular and shape A (R)

information Terminology:

magnitude = A — log(flux)
color = magnitude - magnitude




* Spectroscopic or photometric redshifts (photo-zs).

Accurate but Innaccurate
expensive but cheap

* For large surveys such as DES, PanSTARRS and LSST, photo-zs
are the only option (besides cross-correlation techniques).






e Probe strong
spectral features

(4000 A break)

Flux

e Fluxin each filter
depends on galaxy’s
type and redshift.

4000 6000 8000 10000 12000
A (R)



e A difficulty is that thereis a
distribution of spectral

types.

e Galaxy spectra = sum of
stellar spectra

e Stellar spectrum =
blackbody spectrum +
absorption and emission
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Two classes of methods: - -

e Template-fitting: compare
observed fluxes with predicted
fluxes from library of galaxy
spectra.

Flux

e Training set: use subsample
with known redshifts to “train”
flux-redshift relation.
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Photo-zs are often not very good.
Three steps before getting to the
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Photo-zs are often not very good.

Three steps before getting to the
cosmology: e
i

e Get photo-zs; spectra "
recommended N‘é. =

e Estimate photo-z errors and
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cull outliers; spectra 0 :
recommended © Ogg= 0.077]
: o = 0.129-
» Calibrate error distribution, o ST AT I B
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| Needspectra,sowhat?

Good spectroscopic samples are hard to come by. Issues

* Selection in observables: typically have many more bright
samples than faint samples.

* Selection in non-observables: sample selected for a different
purpose with different bands (e.g. DEEP2 survey).

* Shot-noise: samples are small.
 Sample variance: surveys are pencil-beam.

e Spectroscopic failures:

— Can’t get spectra for certain galaxies.
— Wrong spectroscopic redshifts.



Good spectroscopic samples are hard to come by. Solutions

Selection in observables: e.g. Weights (Lima, Cunha et al 2008)

Selection in non-observables: Don’t do it. (Cunha et al 2009)

Shot-noise: need many galaxies
Cunha et al. 2012a

Sample variance: need lots of area.

Spectroscopic failures:
— Can’t get spectra for certain galaxies. Cunha et al. 2012b
— Wrong spectroscopic redshifts.
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For typical existing
spectroscopic samples,
sample variance is significantly
larger than shot noise.

Cunha, Huterer, Busha, Wechsler et al,
2012a
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Figure 1. Normalized spectroscopic redshift distribution for the
full data. The red (light gray) error bars show the 1-o variability
in the redshift distribution for contiguous 1 deg? angular patches.
The blue (dark gray) error bars show the variability in the redshift
distribution assuming random samples of with the same mean
number of objects as the 1 deg? patches. We assume that only a,
25% random subsample of each patch is targeted for spectroscopy,
yielding about 1.2 x 10* galaxies per patch on average.



Good spectroscopic samples are hard to come by. Solutions

* Selection in observables: e.g. Weights (Lima, Cunha et al 2008)

 Selection in non-observables: Don’t do it. (Cunha et al 2009)

* Shot-noise: need many galaxies
Cunha et al. 2012a

 Sample variance: need lots of area.

e Spectroscopic failures:
— Can’t get spectra for certain galaxies. Cunha et al. 2012b
— Wrong spectroscopic redshifts.



Spectroscopic failures (wrong redshifts)

Issues: 5
— When spec-z’s are wrong, they’re really
wrong. 16
— A small speck of wrong redshifts is 12
enough to mess up cosmological 8
constraints. ™ 08
0.4
Sample used in the plot has 98.6% correct i
redshifts and constitutes 60% of total sample 0 =

(bias in w: O(100%)).

Case study: Simulations of
DES photometry + VVDS-like spec-z’s

04 08 12 16 2

Ztrue

R: cross-correlation
parameter (measures
redshift confidence)

Cunha, Huterer, Lin, Busha, Wechsler et al, 2012b






* Want: 0=



* Want;:

| -N
* (Think you) get: = N: number of
N galaxies, clusters, ...
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e Want: 0="——
0
N-N
* (Thinkyou) get: 0 =——— N: number of
N galaxies, clusters, ...
* Actually get: 5, = Novs
Nobs

Selection or
where  Nops (x) =(1+c(x))N(x) calibration errors

D







Deal with: telescope/camera,
atmosphere, seasons, Moon, Milky
Way — over several years.

Multiple overlapping tilings with

varying orientations + standard stars
+ ..

20°  Main survey

60°

Overlap with SDSS equatorial
Stripe 82 for calibration (200 sq deg)
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Deal with: telescope/camera,
atmosphere, seasons, Moon, Milky
Way — over several years.

Multiple overlapping tilings with

varying orientations + standard stars
+ ...
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Simulations courtesy of Jim Annis
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Mag. Limits affect N(8)

Mag. limits affect redshift distribution
-> coupling between angular and
radial effects (problem is more
complicated if using photo-zs).

DES 5yr
mag — limits

Simulations courtesy of Jim Annis
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Mag. Limits affect N(8)

Mag. limits affect redshift distribution
-> coupling between angular and
radial effects (problem is more
complicated if using photo-zs).

Varying colors, affect galaxy types
being selected.

- Different types have different
HODs, with different biases.

- variation in color -> scale-
dependent halo bias

Need to couple radial-angular mask

Uncertainty in calibration will still be a
problem.

DES 5yr
mag — limits

Simulations courtesy of Jim Annis
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60°

Distribution of stars is not random. Overlap with SDSS equatorial

Pronounced variation with latitude. Stripe 82 for calibration (200 sq deg)
20°

L , A6 1200 900 60 0° 0K N 10 16
Classification using colors Connector region

(magnitudes) a0, 1 R "~ (8005sq deg)

region
1 (4000 sq deg) |

-60°

Milky Way | o



Thin dashed at low I:
Limber approx

Thin dashed at high I:
linear theory

(I+1)C/(2)
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Power spectrum
decreases with
increasing redshift
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Error bars: cosmic variance



» C(Calibration of wide surveys is a tough challenge.

* Requirements are more stringent for non-Gaussianity
constraints.

 The larger scales are more sensitive to the calibration bias.
* |sotropy tests should provide important cross-check.






without
calibration

errors '
Assuming

statistical
isotropy!




without
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errors
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Error bars: variations
from allocatting e_,;, to
different m.
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Changes in m;,.(6)
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Schlegel, Finkbeiner & Davis Peek & Graves corrections
(SFD) extinction maps to extinction maps

-0.011 — —— 0.043 E(B-V)

Simple test: Assume Peek & Graves corrections are the
calibration error
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DES magnitude limit
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local

Artificial correlations can mimic f,. For /xt*, separations
>100 Mpc (several degrees) are crucial.

\
Because of 1/k?2 scale
Artificial correlations can be due to: dependence of bias
— photometric calibration const
p ic cali b(k) =b, + fy, -

More relevant
for galaxies
than clusters

— photometric redshifts
— star/galaxy separation

Clusters have own selection issues



Study Dark Energy using

_ www.darkenergysurvey.org
4 complementary techniques:
|. Cluster Counts

Il. Weak Lensing

lll. Baryon Acoustic Oscillations
V. Supernovae

« Two multiband surveys:
Main: 5000 deg? = 5 (h"1Gpc)3
300 million galaxies
g, r,i z, Yto 24th mag
SNe: 15 deg? repeat

. Build new 3 deg? FoV camera

and Data management sytem in Blanco
4-m telescope

Survey 2012-2017 (525 nights)

Camera available for community use
the rest of the time (70%)




Example:

Distribution of galaxies in
photometric sample:

Distribution of galaxies in
calibration sample:

1 1 1
phot 6 zphot 1 6
1 2 1

spec spec

LSS fluctuation!!!



photometric
sample:
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calibration
sample:

Colums:

phot

Rows:

spec



photometric
sample: 111]2 1{1]4 calibration
1le6l1 116l 2 sample:
Conclusion:

fluctuations.

P(z,|z,) is sensitive to z
is not. Conversely, only P(z,|z,) is sensitive to z

spec

fluctuations, but P(z,| z)
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