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Basic scales in WIMP dark matter scattering off nuclei

•  if mass is on the weak scale, WIMP momentum transfers in elastic
   scattering can range to qmax ∼150 MeV/c

•  WIMP kinetic energy ∼ 30 keV  << typical nuclear excitation energies

•   RNUC ∼ 1.2 A1/3 f  !   qmax R ∼ 2.4 "  4.6  for F "  Xe

•   the nuclear targets include a large range of masses, ground-state spins,
   and isospins 



Nontrivial spins, momentum transfer ⇒ complexity.   Despite this,

cross sections are typically described as in a point-like system
        
                 S.I.  

                 S.D.

with this providing the basis for most comparisons among experiments

Two issues are thus

• the use of a highly model-dependent, simplistic description of the low-
  energy WIMP-nucleus interaction 

• absence of proper quantum mechanical treatment of the nuclear 
  response 
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These are not technical shortcomings, but fundamental ones

•  theory:  lack of a basic understanding of what can and cannot be
   learned about the low-energy constants governing the WIMP
   interactions with nucleons

•  experiment:  lack of a realistic formalism for comparing experiments,
   and thus for assessing their consistency

Contrast with the efforts decades on weak interactions -- S, T, V, A,P
leading to V-A



III.  Effective theories:  WIMP-nucleon and WIMP-nuclear*

EFT can address two basic questions
   •  how might low-energy DM particles interact with ordinary matter?
   •  to what extent can we distinguish among these possibilities, given
      only information on elastic scattering (ES) off nuclei?

For question #1, there are two possible approaches
  •  Top-down - study all ultraviolet theories.  By dimensional analysis,
           no. of ultraviolet theories of DM ≿ no. particle theorists
  •  Bottom-up:   many theories are equivalent at low energies:  
     we need only the most general effective theory*
                        how are these ETs restricted by physics?
  •  Lorentz invariance:     which simplifies to Galilean invariance
  •  other symmetries?     we know of none:  parity conserving or
           parity violating, time reversal invariant or non-invariant ?? ...
  •  quantum mechanics:   instructs us to use Hermitian operators

*L Fitzpatrick, WH, A Katz, N Lubbers, and Y Xu,   arXiv:1203.3542 and arXiv:1211:2818



Hermitian operator i~q ~v? S� SN

parity �1 �1 +1 +1
time reversal +1 �1 �1 �1

where

14 distinct WIMP-nucleon interactions exist at  NNLO -- lots of SI/SD
interactions.   Furthermore,  nontrivial isospin:  a = a0+a1τ3   
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Hermitian operator i~q ~v? S� SN

parity �1 �1 +1 +1
time reversal +1 �1 �1 �1

where

one of these can be eliminated, as it does not correspond to the leading
order reduction of any candidate ultraviolet theory  
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Hermitian operator i~q ~v? S� SN

parity �1 �1 +1 +1
time reversal +1 �1 �1 �1

where

one must be added for the opposite reason (an orphaned UV theory)
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The WIMP-nucleus Hamiltonian can be constructed 

Follows from the one-body replacement

though for specific theories, one can include additional nuclear physics,
such as exchange currents, meson loop corrections*

                            *e.g., chiral EFT:       Cirigliano, Graesser, Ovanesyan arXiv:1205.2695
                                                                   Menendez, Gazit, Schwenk arXiv:1208:1094

~vN !
AX

i=1

~vN (i)

In analogy with Eq. (27) one then obtains the WIMP-nucleus interaction
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where the subscript int instructs one to take the intrinsic part of the nuclear operators (that is, the part
dependent on the internal Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-
dependent densities appear – the nuclear axial charge operator, familiar as the � decay operator that mediates
0+ $ 0� decays; the convection current, familiar from electromagnetism; and a spin-velocity current that
is less commonly discussed, but does arise as a higher-order correction in weak interactions. The associated
WIMP tensors contain the EFT input
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In the Appendix the products of plane waves and scalar/vector operators appearing in Eq. (35) are
expanded in spherical and vector spherical harmonics, and the resulting amplitude is squared, averaged over
initial spins and summed over final spins. One obtains
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familiar interactions:

This is the vector charge density probed in elastic electron scattering 
or in coherent neutrino scattering

(generalized) vector charge
In analogy with Eq. (27) one then obtains the WIMP-nucleus interaction
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where the subscript int instructs one to take the intrinsic part of the nuclear operators (that is, the part
dependent on the internal Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-
dependent densities appear – the nuclear axial charge operator, familiar as the � decay operator that mediates
0+ $ 0� decays; the convection current, familiar from electromagnetism; and a spin-velocity current that
is less commonly discussed, but does arise as a higher-order correction in weak interactions. The associated
WIMP tensors contain the EFT input
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In the Appendix the products of plane waves and scalar/vector operators appearing in Eq. (35) are
expanded in spherical and vector spherical harmonics, and the resulting amplitude is squared, averaged over
initial spins and summed over final spins. One obtains
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familiar interactions:

This is an operator density studied in beta decay, through only
through inelastic 0- #  0+ transitions.  

axial-vector chargeIn analogy with Eq. (27) one then obtains the WIMP-nucleus interaction
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where the subscript int instructs one to take the intrinsic part of the nuclear operators (that is, the part
dependent on the internal Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-
dependent densities appear – the nuclear axial charge operator, familiar as the � decay operator that mediates
0+ $ 0� decays; the convection current, familiar from electromagnetism; and a spin-velocity current that
is less commonly discussed, but does arise as a higher-order correction in weak interactions. The associated
WIMP tensors contain the EFT input
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In the Appendix the products of plane waves and scalar/vector operators appearing in Eq. (35) are
expanded in spherical and vector spherical harmonics, and the resulting amplitude is squared, averaged over
initial spins and summed over final spins. One obtains
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familiar interactions:

This spin density dominates neutrino-nucleus inelastic scattering at 
solar and supernova neutrino energies.   We know a lot about its 
elastic moments due to nuclear magnetic moments, etc.

axial-vector spin currentIn analogy with Eq. (27) one then obtains the WIMP-nucleus interaction

X

⌧=0,1

"

l⌧0

A

X

i=1

e�i~q·~xi + lA⌧

0

A

X

i=1

1

2M

✓

�1

i

 �r
i

· ~�(i)e�i~q·~xi + e�i~q·~xi~�(i) · 1
i

�!r
i

◆

+ ~l⌧5 ·
A

X

i=1

~�(i)e�i~q·~xi + ~l⌧
M

·
A

X

i=1

1

2M

✓

�1

i

 �r
i

e�i~q·~xi + e�i~q·~xi
1

i

�!r
i

◆

+ ~l⌧
E

·
A

X

i=1

1

2M

⇣ �r
i

⇥ ~�(i)e�i~q·~xi + e�i~q·~xi~�(i)⇥�!r
i

⌘

#

int

t⌧ (i) (35)

where the subscript int instructs one to take the intrinsic part of the nuclear operators (that is, the part
dependent on the internal Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-
dependent densities appear – the nuclear axial charge operator, familiar as the � decay operator that mediates
0+ $ 0� decays; the convection current, familiar from electromagnetism; and a spin-velocity current that
is less commonly discussed, but does arise as a higher-order correction in weak interactions. The associated
WIMP tensors contain the EFT input
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In the Appendix the products of plane waves and scalar/vector operators appearing in Eq. (35) are
expanded in spherical and vector spherical harmonics, and the resulting amplitude is squared, averaged over
initial spins and summed over final spins. One obtains
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familiar interactions:

This is the vector convection-current response familiar from inelastic 
electron and neutrino scattering;  elastic response known from back-
angle magnetic electron scattering and from atomic hyperfine 
interactions

vector convection currentIn analogy with Eq. (27) one then obtains the WIMP-nucleus interaction
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where the subscript int instructs one to take the intrinsic part of the nuclear operators (that is, the part
dependent on the internal Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-
dependent densities appear – the nuclear axial charge operator, familiar as the � decay operator that mediates
0+ $ 0� decays; the convection current, familiar from electromagnetism; and a spin-velocity current that
is less commonly discussed, but does arise as a higher-order correction in weak interactions. The associated
WIMP tensors contain the EFT input
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In the Appendix the products of plane waves and scalar/vector operators appearing in Eq. (35) are
expanded in spherical and vector spherical harmonics, and the resulting amplitude is squared, averaged over
initial spins and summed over final spins. One obtains
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familiar interactions:

The most exotic of the contributing densities:  appears at order
1/M2 in nonrelativistic reductions of weak operators

These are all the nucleon densities than can be constructed to first
order in momenta

vector spin-velocity current

In analogy with Eq. (27) one then obtains the WIMP-nucleus interaction
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where the subscript int instructs one to take the intrinsic part of the nuclear operators (that is, the part
dependent on the internal Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-
dependent densities appear – the nuclear axial charge operator, familiar as the � decay operator that mediates
0+ $ 0� decays; the convection current, familiar from electromagnetism; and a spin-velocity current that
is less commonly discussed, but does arise as a higher-order correction in weak interactions. The associated
WIMP tensors contain the EFT input
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In the Appendix the products of plane waves and scalar/vector operators appearing in Eq. (35) are
expanded in spherical and vector spherical harmonics, and the resulting amplitude is squared, averaged over
initial spins and summed over final spins. One obtains
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8 of the 14 EFT interactions involve derivative couplings.  There is no
way to treat such a DM operator properly in a point-nucleus limit

•  Take, e.g., the Galilean-invariant interaction

•  If one were to properly evaluate this for a point nucleus (rarely if
   ever done), one would get a spin-dependent contribution,

•  But in fact this is just one of A Galilean-invariant Jacobi momenta
   in the problem.  The neglected part of the operator is

   1

A

AX

i>j=1

(~SN (i)� ~SN (j)) · (~vN (i)� ~vN (j)) ⇠ 10�1

AX
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•  Because this operator carries odd nuclear parity, it must be 
   evaluated for a composite nucleus, that is, using the full operator
 

•  This does not weaken the operator as                    .  With a bit
   of algebra operator such as the following can be identified

•  Such composite operators, not the point operators traditionally
   used in DM studies, clearly dominate the response for a
   large class of interactions as

   yet have been universally neglected

One can reach the same conclusions using only symmetry arguments
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The form of the DM-nucleus elastic scattering cross section can be
determined from the underlying symmetry properties of the nuclear
currents in combination with the good approximate P, CP of the nucleus

charges:

currents:

where we list only the leading multipoles in J above 
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Response constrained by good parity and time reversal of nuclear g.s.
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Response constrained by good parity and time reversal of nuclear g.s.
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Response constrained by good parity and time reversal of nuclear g.s.

6 (not 2!) independent responses based on symmetry of 4-current densities 
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So we cut to the chase and do the ET ➝ nucleus calculation, which
yields a detailed result fully consistent with these symmetry
considerations (a reasonable starting point yields a reasonable
answer)

The results tell one
      1) what in principal can be learned about WIMPS from ES
      2) what ambiguities in the low-energy constants will remain
          even after a complete set of ES experiments is done
          



theorist’s analog of the experimentalist’s big magnet picture
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Table 1: The response dark-matter nuclear response functions, their leading order behavior,
and the response type. The notation ⌦ denotes a spherical tensor product, while ⇥ is the
conventional cross product.
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we understand/control this



we hope to probe this



and this is precisely the WIMP physics we can learn
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Note that five of the eight terms above are accompanied by a factor of ~q 2/m2
N

. This is the parameter identified
in Sec. 2.3 that governs the enhancement of the composite operators with respect to the point operators
for those O

i

where composite operators contribute. Thus one can read o↵ those response functions that are
generated by composite operators from this factor. The DM particle response functions are determined by
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The six nuclear operators appearing in Eq. (37), familiar from standard-model electroweak interaction
theory, are constructed from the Bessel spherical harmonics and vector spherical harmonics, M
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Bottom lines:

DM practitioners purport to be studying unknown low-energy weak 
interactions, yet analyze experiments without the operators that we
know are essential to describing known SM electroweak interactions
 
ES can in principle give us 8 constraints on DM interactions

To obtain those constraints one must turn the “nuclear physics knobs”
to vary the contributing nuclear operators

The eight constraints are functions of the 2x14 parameters that govern 
the NNLO effective theory

So nuclear ES cannot fully determine the theory; conversely, the
notion that one 3rd-generation experiment will suffice is silly



In the case of about half of the effective operators one can construct,
it is impossible to represent the ES answer in terms of standard
spin-independent/spin-dependent responses
 
          a) the response magnitude will be in error by
 
          b) the predicted multipolarity will be wrong

          c) the predicted scaling of cross section with both WIMP
              and target mass will be wrong

⇠ 10
µ2
T

m2
N

⇠ 104
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Abstract

A model independent formulation of WIMP-nucleon scattering was recently developed in Galilean-

invariant e↵ective field theory and embedded in the nucleus, determining the most general WIMP-nucleus

elastic response. This formulation shows that the standard description of WIMP elastic scattering in

terms spin-dependent and spin-independent responses frequently fails to identify the dominant opera-

tors governing the scattering, omitting four of the six responses allowed by basic symmetry considera-

tions. Consequently comparisons made between experiments that are based on a spin-independent/spin-

dependent analysis can be misleading for many candidate interactions, mischaracterizing the magnitude

and multipolarity (e.g., scalar or vector) of the scattering. The new responses are associated with velocity-

dependent WIMP couplings and correspond to familiar electroweak nuclear operators such as the orbital

angular momentum

~l(i) and the spin-orbit interaction ~�(i) · ~l(i). Such operators have distinct selection

rules and coherence properties, and thus open up new opportunities for using low-energy measurements

to constrain ultraviolet theories of dark matter.

The community’s reliance on simplified descriptions of WIMP-nucleus interactions reflects the absence

of analysis tools that integrate general theories of dark matter with standard treatments of nuclear

response functions. To bridge this gap, we have constructed a public-domain Mathematica package for

WIMP analyses based on our e↵ective theory formulation. Script inputs are 1) the coe�cients of the

e↵ective theory, through which one can characterize the low-energy consequences of arbitrary ultraviolet

theories of WIMP interactions; and 2) one-body density matrices for commonly used targets, the most

compact description of the relevant nuclear physics. The generality of the e↵ective theory expansion

guarantees that the script will remain relevant as new ultraviolet theories are explored; the use of density

matrices to factor the nuclear physics from the particle physics will allow nuclear structure theorists to

update the script as new calculations become available, independent of specific particle-physics contexts.

The Mathematica package outputs the resulting response functions (and associated form factors) and

also the di↵erential event rate, once a galactic WIMP velocity profile is specified, and thus in its present

form provides a complete framework for experimental analysis. The Mathematica script requires no a

priori knowledge of the details of the non-relativistic e↵ective field theory or nuclear physics, though the

core concepts are reviewed here and in [1].

1 Introduction

Despite the many successes of the ⇤CDM cosmological model in predicting the macroscopic behavior of dark
matter, attempts at an experimentally significant direct detection of the dark matter particle have been
unsuccessful and its fundamental nature remains uncertain [2] [3]. A promising candidate is a weakly inter-
acting massive particle (‘WIMP’) that interacts with standard-model particles through a cross section that
is suppressed compared to standard electromagnetic interactions. The challenges associated with observing
such a particle notwithstanding, experimental techniques are advancing at a rapid pace, and expectations
are high that a definitive measurement of dark matter interactions is imminent.

In “direct detection” experiments, an important class of dark matter searches, the signals are recoil
events following WIMP elastic scattering o↵ target nuclei [4] [5] [6]. Many models predict rates for such
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