Update on the MiniCLEAN Dark Matter Experiment

Keith Rielage, for the MiniCLEAN Collaboration
Los Alamos National Laboratory
Pulse-Shape Discrimination in LAr

- Noble liquids have singlet and triplet excited states
- For argon and neon, decay times for these states are different and long enough to provide discrimination between electronic and nuclear recoils
- Electronic recoils result in creation of more triplet states so more late light
- Data shows pulse shape discrimination of 10^{-10} achievable, demonstrated 10^{-8}
MiniCLEAN Goals

• Based on the 95% (almost 4π) coverage design:
 • Measurement of light yield compared to simulation
 • Demonstration of 3D position reconstruction

• At that light yield:
 • High statistics measurement of background PDF due to PSD leakage of 39Ar decays
 • Informs future performance of large argon detectors

• With MiniCLEAN:
 • Measure backgrounds (surface alphas, neutrons, etc.)
 • Test analysis and background rejection techniques

• With additional funding:
 • Replace argon target with liquid neon to inform future large detector designs for dark matter, p-p solar neutrino experiments
Conceptually Simple Detector

- Sphere of argon or neon serves as target for WIMPs
- Scintillation light from recoils at 80-128 nm
- Converted to visible by wavelength shifter on acrylic
- Light guide brings visible light to photomultiplier tube where signal recorded
MiniCLEAN Detector

- Liquid cryogen can be argon or neon
- ~150 kg fiducial volume, 500 kg active volume
- PMTs - Hamamatsu R5912-02MOD operating in cryogenic liquid
- Cryogen, PMTs and wavelength shifters contained in stainless steel Inner Vessel (IV)
- IV is surrounded by stainless steel Outer Vessel with vacuum insulation and thermal blanket
- PMT and wavelength shifter (TPB) on acrylic plate are part of modular optical cassette
- 92 optical cassettes
- Operates 6800’ underground at the SNOLAB underground laboratory in Sudbury, Ontario, Canada
MiniCLEAN Conceptual Design

Not Shown:
- Magnetic Compensation
- Process Systems
- Cable Bundles

Tank 18' dia. x 25' tall
47,600 gallons

~1.5m water top & sides
~3.5m water bottom
MiniCLEAN Conceptual Design

- Outer Vessel
- Inner Vessel
- Calibration Ports
- Optical Module
- Target Volume
- LAr/LNe
- PMT
- Top Hat
- Light Guide
- Acrylic Plug
Outer Vessel Progress

Underground in January, installed in May
Inner Vessel Progress

- Manufacturing completed and tested in September 2012
Inner Vessel Progress

- Cleaned - April
- Spools added - May
- Under vacuum - July
Optical Cassette Progress

Light guide - test fit

Light guide/acrylic assembly

WLS

PMT assembly
Optical Cassette Progress

First optical cassettes installed last week
Subsystem Progress

Magnetic Compensation System

Argon Purification System

Electronics/DAQ
PSD Demonstration with Enriched Argon

• Spike the detector with a sample of 39Ar to increase the level of this background ~8x (and shorten time to perform measurement)

• Use to extract ultimate PSD leakage rate achievable

• DOE isotope program produced 39Ar as byproduct in irradiated KCl target
 • About 138 MBq (need 25kBq)

• Extraction and purification will be performed at LANL soon
MiniCLEAN Schedule

- Assembly and initial commissioning complete in late Fall 2013
- 4-5 weeks to condense argon gas into LAr
- ~8 weeks of calibration and running:
 - Energy scale
 - Position reconstruction
 - Neutron calibration
 - Preliminary PSD
- Then ~100 days of enriched argon running
 - Produce at least 10^{10} 39Ar events in the fiducial volume
- Use PSD run to compare to DEAP-3600, Darkside-50, etc
- Pursue addition of LNe
Utility of LNe Run for Dark Matter

- Running with two different ^{39}Ar rates, combined with neon run offers a powerful test of any possible WIMP signal.
Analysis Techniques

- Bayesian Single PE counting:
 - deals with PE pile-up in prompt region
 - better performance than simple charge division
 - determines number of PE and time for each waveform to improve energy resolution at low energy
Analysis Techniques

- **Position Reconstruction**: using likelihood based approach to predict location of event
- **Pulse shape discrimination**: \(F_{\text{prompt}}\) vs. \(L_{\text{recoil}}\)
 - \(L_{\text{recoil}}\) uses PE times from PE counter, singlet and triplet ratios and lifetimes as inputs
 - most improvement at low energy
Summary

- Assembly of MiniCLEAN is in final stage
- Expect to begin LAr fill by end of 2013
- Will study backgrounds and position reconstruction
- Enhance with 39Ar for PSD measurement
- Will pursue liquid neon R&D
- New analysis techniques will be tested
- MiniCLEAN will provide valuable data for future argon experiment plans
MiniCLEAN Collaboration

Boston University
D. Gastler, C. Kachulis, E. Kearns, S. Linden

University of California - Berkeley
G.D. Orebi Gann

Los Alamos National Laboratory

Massachusetts Institute of Technology
J.A. Formaggio, S. Jaditz, J. Kelsey, K. Palladino

National Institute of Standards and Technology
K. Coakley

University of New Mexico
M. Bodmer, F. Giuliani, M. Gold, J. Wang

University of North Carolina/TUNL
R. Henning, S. MacMullin

University of Pennsylvania
T. Caldwell, J.R. Klein, A. Latorre, A. Mastbaum, S. Seibert

Royal Holloway University London
A. Butcher, E. Grace, J. Monroe, J.A. Nikkel, J. Walding

SNOLAB Institute
F.A. Duncan, I. Lawson, O. Li, P. Liimatainen, K. McFarlane

University of South Dakota
V. Guiseppe, D.-M. Mei, G. Perumpilly, C. Zhang

Syracuse University
R. Bunker, Y. Chen, R.W. Schnee, B. Wang

Yale University
D.N. McKinsey