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Directional Dark Matter Detection

DM Halo

o WIMPs expected to have
preferred direction in
galactic coords

@ Detector that can measure
direction of low-E nuclear
recoils can exploit this
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DMTPC Basics

@ We look for nuclear recoils from WIMPs in low-pressure (=50 Torr)
CF4 gas. Low-pressure allows macroscopic extent of particle tracks.

@ Because of °F nuclear structure and small mass, DMTPC sensitive
mostly to spin-dependent WIMP coupling.

@ Detector is a TPC with CCD + charge + PMT readout

@ In prototyping, (not discovery) stage. Goal is to come up with a
m3-scale detector that could be replicated for large target mass.
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Detector concept
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Detector concept
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Detector concept
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Detector concept
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Detector concept
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Detector Readouts

ixel intensity (a.u.)
L Y 250

CCDs Take 2-Dimensional image of
projected track scintillation profile.
Currently use Alta U6 binned 4x4.

1l.4cm

Anode Integrating Amp Charge-Sensitive Integrating

Amp (CR-113) measures total charge
induced on anode. ~270 keVee AmBe source [

50

Veto Integrating Amp Charge-Sensitive Integrating
Amp (CR-112) measures total charge
induced on outer veto region (and f
cross-talk proportional to distance >E
from center). g

l.4cm

Current Amp

Fast Amp Current-Sensitive Amp
(Route2Electronics) measures current :
between the ground mesh and anode. -

Anode CSP
Veto CSP

PMTs Measure light output over time for > |
track. Not discussed here microseconds
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CCD Track Parameters
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Head-Tail

@ A nuclear recoil in the energy
range of interest (well below
Bragg peak) will lose more
Fluorine energy towards the front of the
track

@ However, diffusion and spatial
resolution “blur” the track,
making reconstruction of sense

Average Stopping Power (keV/mm)

ol 75 Torr CF, 1 el } )
o difficult in practice
5 10
Range (mm) @ “Head-tail” fraction is fraction

of tracks with correct sense (i.e.
pointing in the correct
hemisphere)
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Parameter Reconstruction (old method)

To estimate axis, find axis that

e 3 . . .
S L YO . maximizes moments of pixels in cluster
=E o . . .
L AT @ To get vector direction, pick half of

E first half second hal E

a g track that has more energy

Energy from sum of intensities

Range from maximal separation in
reduced cluster

_ All of these methods rely on picking the
60 80 100 120 140 160 180 200 220 piXGIS in the track correctly, which is
difficult to do
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Model-based Fitting

@ Improve reconstruction of CCD parameters by fitting image near track
to simple dE/dX model convolved with “diffusion”
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Fitting Example
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Fitting Improvements

H-T fraction (from hemisphere))
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Angled Alpha Study Comparison

o Use 1 Am alpha source
placed so only last few
hundred keV enter
detector.

@ Because all events are o _ =
near cathode, maximal H-T fraction (from hemisphere)
diffusion. ' y

@ Smaller dE/dX than
nuclear recoils, similar to

=}
o =
T

o
0
L

. fitting
recoils at lower pressure. oldalgo ]
1 fitting w/ cut |
05 PRELIMINARY 7
o sF Angled Alpha ]
Ends

40 _ 60 80
Fit range (pixels)

Fraction correct (same hemisphere)
o
~J1
T

o
DO
o

Cosmin Deaconu (MIT/LNS) DMTPC @ TAUP 2013 September 11, 2013 14 /20



Detector

parameter optimization
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@ MC studies show that key parameter for directionality is ratio of track
projected length to transverse width (from diffusion).

@ Suggests that going to lower pressure is necessary for lower
sense-sensitivity threshold.

@ Current production amplification regions don't work at high gain

below 60T due to mechanical issues, which we are working on.
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New Amplification Design: Triple Mesh

@ Allows imaging of two TPC's with one camera (good cameras and
lenses are expensive).
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Current Prototypes

@ Small prototypes in test chamber demonstrate concept works with
charge +°°Fe. CCD tests forthcoming.

@ Alternative double-stage amplification setup (similar to work Loomba
has done with DRIFT) greatly increases gas gain (preliminary:
>500,000 at 30 Torr).

@ For nuclear recoils, cannot operate at such high gain due to Raether
Limit, which limits the total number of electrons in an avalanche to
around 108 before sparking.

@ But lowering pressure — less density — can raise gain and keep SNR
approximately constant with longer tracks.
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Near Future

@ Underground results from WIPP for older prototype
@ Neutron calibration results from new prototype

@ We've been slow about writing papers, but are getting around to
writing a bunch right now.
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Thank you!

Questions?
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Backup Slides
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Energy Calibration

@ For CCD, use projection of « track

from 2*'Am source and compare
averaged dE/dX to SRIM prediction.

o For charge, use 5°Fe source.

@ Use %’Co to calibrate for spatial gain
variation

SRIM-based MC
data w/ gainmap
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Out of plane (Vertical) Angle
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@ Rise time of fast pulse
correlated with AZ

e PMT width also
correlated.

@ Track fit can also be
used to estimate angle
(based on Energy /
projected range relation
and maximum dE/dX
achieved)
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Backgrounds - MIPs

@ Charge channels easily
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pulse rise time and can
be vetoed by paddles.
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Backgrounds - «
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@ From internal radiation 150

in the detector
100

@ Most come from rings

and are easily identified 600 50
@ Dangerous as come from o

tracks which are cutoff 1000

by the CCD readout -1000 _ 50

process

@ A shutter can be used to
mitigate this, or we can
look for a hard ege
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Backgrounds - ~y

@ From internal radiation

%503 rata o CCD mostly blind due to
5405 ) B No Source, Pass All, 13.8 hr |OW dE/dX
(7] E ample pulse shape parameter
z_ : : : o Charge channels see
E30§: many of these, but veto
k205 A and topology of fast
§10§ SR amplifier pulse can be

0 40 8o 120 160 200 used to remove > 99.9%

" of these.
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Backgrounds - RBIs

e With front illuminated CCD'’s
(such as ours), exposure to large
amounts of infrared light (from
e.g. sparks) leads to charge
being stored in an interface trap.

@ This manifests itself as a
slowly-fading after image

@ Can be removed by use of
spacial correlation and removing
areas that saturate during
sparks.
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Backgrounds - Hot Pixels and CCD Interactions

@ Hot pixels are generally removed by
subtracting averaged background
frames. However, since they turn on
and off, a partially subtracted hot pixel
combined with fluctuations can look
like a track to our algorithms.

@ Direct interactions between e.g. cosmic
rays and the CCD also produce tracks.

@ This class of backgrounds can be
studied by taking images with the CCD
turned off. A multivariate algorithm is
then applied on cluster parameters to
optimally distinguish between CCD-only
events and nuclear recoils.
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Track Recognition

@ For the CCD, we must determine which pixels make up a track before
performing further analysis.

@ Current algorithm works by low-pass filtering the image, applying a
threshold (based on image noise) to select a “seed” for a cluster, then
adding additional pixels around using a sliding threshold.

@ Requirements are made on morphological compactness and number of
pixels

@ Because of spacers in the amplification region, there are dead spots in
the image. Clusters must be merged across, otherwise one long «
appears as many shorter tracks. Merging is done by checking if tracks
are directly across spacers and by checking if track combinations form
lines.
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