New Limits on Sterile Neutrino Mixing with Atmospheric Neutrinos

Alex Himmel
Duke University

for the
The Super Kamiokande Collaboration

13th International Conference on Topics in Astroparticle and Underground Physics

September 12th, 2013
What is a Sterile Neutrino?

Measurements at LEP tell us that the Z^0 couples to only 3 light neutrinos.
What is a Sterile Neutrino?

3 neutrinos \rightarrow 2 mass splittings

ν_3 ν_2 ν_1
What is a Sterile Neutrino?

3 neutrinos \Rightarrow 2 mass splittings

ν_3

ν_2

ν_1

Δm^2_{atm}

Δm^2_{sol}

4 neutrinos \Rightarrow 3 mass splittings

ν_4

ν_3

ν_2

ν_1

Δm^2_{atm}

Δm^2_{sol}

$\Delta m^2_{???}$
What is a Sterile Neutrino?

3 neutrinos \rightarrow 2 mass splittings

ν_3

ν_2

ν_1

Δm^2_{atm}

Δm^2_{sol}

$\Delta m^2_{???}$

ν_3

ν_2

ν_1

3 mass splittings \rightarrow 4 neutrinos

One of which does not couple to the Z and so does not interact weakly, i.e. sterile
What is a Sterile Neutrino?

- One more neutrino adds 7 complex matrix elements
 - but not all independent.

- $1 \Delta m^2$, 3 “angles”, 2 phases – varying parameterizations
 - $|U_{e4}|^2, |U_{\mu4}|^2, |U_{\tau4}|^2$ or $\theta_{14}, \theta_{24}, \theta_{34}$

- One more neutrino adds 8 more parameters
Evidence of Sterile Neutrinos

\[\Delta m^2 \gtrsim 0.1 - 10 \text{ eV}^2 \]

2-flavor approx.

\[\sin^2 2\theta_{\mu e} = 4 |U_{e4}|^2 |U_{\mu 4}|^2 \]

Both \(|U_{e4}|^2 \) and \(|U_{\mu 4}|^2 \) must be > 0 for non-zero probability
Evidence of Sterile Neutrinos

Reactor $\bar{\nu}_e$ rate low at short distances

$|U_{e4}|^2 \approx 0.02$

$\Delta m^2 > 1 \text{ eV}^2$

2-flavor approx.

$\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1 - |U_{e4}|^2)$
What can Super-K tell us?

- 11 years of atmospheric neutrino data.
 - Covering a wide range of L and E

- It is most useful because of what it is not sensitive to:

<table>
<thead>
<tr>
<th>The size of the sterile mass splitting</th>
<th>Oscillations appear “fast”</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of sterile neutrinos</td>
<td>3+1 and 3+N models look the same</td>
</tr>
</tbody>
</table>
What can Super-K tell us?

- **Short-baseline-related:** $|U_{\mu 4}|^2$
 - Driven by new Δm^2
 - Creates fast oscillations across a wide range of ν_μ samples

- **Atmospheric/long-baseline:** $|U_{\tau 4}|^2$
 - Accessible *only* at long distances
 - Oscillations into ν_s instead of ν_τ
 - Introduces a new matter effect

Alex Himmel

50 kT Water

>13,000 PMTs
Super-K Sterile Model

• A fully generic sterile model is difficult computationally
 – Cannot calculate both active (ν_e) and sterile (NC) matter effects together

• So, we need to perform 2 different fits:

| Fit for $|U_{\mu4}|^2$ | Fit for $|U_{\tau4}|^2$ |
|------------------------|------------------------|
| – ν_e matter effects only | – NC matter effects only |
| – Most accurate $|U_{\mu4}|^2$ limit | – Required for $|U_{\tau4}|^2$ |
| – No $|U_{\tau4}|^2$ limit | – Over-constrains $|U_{\mu4}|^2$ |
SK Analysis: Zenith Angle

- Look for change in flavor content vs. L
- Bin by angle and separate μ and e
 - isolate oscillations
 - other samples control systematics
- The original SK analysis was simple: up/down, μ/e
Same philosophy, more samples
Most samples binned in angle & energy
Fully Contained
Sub-GeV

Partially
Contained
Multi-GeV

Up-going μ

100’s of MeV

Few GeV

1 TeV+

μ-like, e-like ($\nu_e/\bar{\nu}_e$), NCπ^0-like

Low energy ->

Poor $\cos\theta_z$ resolution

Long tracks – all μ-like

Uncontained ->

Poor E resolution
Oscillogram: Standard 3ν

$P(\nu_\mu \text{ to } \nu_\mu)$

- 40 km
- 700 km
- 6,200 km
- 12,800 km

Energy (GeV)

- FC Sub-GeV
- Multi-GeV

PC, Stop μ

Through-going μ

Alex Himmel
Oscillogram: $|U_{\mu_4}|^2$ Fit

$P(\nu_\mu \to \nu_\mu)$

km

40 km

700 km

6,200 km

12,800 km

PC, Stop μ

Through-going μ

Through-going μ

Lower survival probability

~everywhere
Fit for $|U_{\mu 4}|^2$

- Signature is extra disappearance in all μ samples
 - Correlated change at all energies, all $\cos \theta_z$
 - Sensitivity limited by μ/e flux uncertainty

Need to do 2 fits since we cannot calculate ν_e and NC matter effects simultaneously
Fit for $|U_{\mu 4}|^2$

$|U_{\mu 4}|^2 < 0.023$ at 90% C.L.

$|U_{\mu 4}|^2 < 0.034$ at 99% C.L.

As with similar experiments, no sterile-driven ν_μ disappearance

Need to do 2 fits since we cannot calculate ν_e and NC matter effects simultaneously

PRD86, 052009 (2012)
PRL52, 1384 (1984)
Fit for $|U_{\mu 4}|^2$

$|U_{\mu 4}|^2 < 0.023$ at 90% C.L.

$|U_{\mu 4}|^2 < 0.034$ at 99% C.L.

As with similar experiments, no sterile-driven ν_μ disappearance

Exclude much of the MiniBooNE appearance signal

Need to do 2 fits since we cannot calculate ν_e and NC matter effects simultaneously
Oscillogram: $|U_{\tau_4}|^2$ Fit

$P(\nu_\mu \text{ to } \nu_\mu)$

Potentially large changes introduced by sterile/NC matter effects

Distortion at long distances/high energies

Shift in Δm^2
Fit for $|U_{\tau 4}|^2$ (with $|U_{\mu 4}|^2$)

- Matter effects create shape distortion in PC/Up-μ zenith distribution
 - Less disappearance in most upward bins, still have extra disappearance in downward bins

Need to do 2 fits since we cannot calculate ν_e and NC matter effects simultaneously
$|U_{\tau 4}|^2 < 0.28$ at 99% C.L.

Favors μ to τ oscillations over μ to s

Lack of sterile matter effects places a strong constraint
- Note, $|U_{\mu 4}|^2$ is over-constrained in this fit

All comparisons from: ArXiv:1303.3011
Conclusions

• Atmospheric neutrinos provide a useful tool to study sterile oscillations
 – Wide range of L/E
 – Measurement independent of Δm^2 and $N_{\text{sterile}} > 1$

• No evidence of sterile neutrinos seen
 – No sterile-driven ν_μ disappearance, consistent with other short- and long-baseline measurements
 – μ to s oscillations strongly disfavored by the lack of sterile matter effects
3+N ≈ 3+1 for Super K

$$P_{\mu\mu} = (1 - |U_{\mu4}|^2)^2 P_{\mu\mu}^0 + \sum_{i \geq 4} |U_{\mu i}|^4$$

• The first sterile term:
 – Controls extra disappearance
 – Is the same for any N_{sterile}

• The second sterile term:
 – Fills in the minima
 – Varies for N_{sterile}

• Our experiment is much more sensitive to first term
 – Beam experiments, focusing on the first oscillation dip, are sensitive to the second term.
No Matter in 3ν

• At right are 2 sensitivities from the 2+1 fit

• The dashed is the normal fit, solid has sterile matter effects arbitrarily turned off

• $|U_{\mu 4}|^2$ limit is unaffected – it is independent of the sterile matter effects
When is Δm_{41}^2 no longer “large”?

- When do the oscillations no longer appear fast?
 - This will be the worst at short L’s and large E’s, so let’s focus on Up-μ with $\cos \theta_z > -0.1$
 - Loop through all these events and calculate the mean of $\sin^2(\Delta m^2 L/4E)$ for various Δm^2

- Doing this, the approximation is valid down to ~ 0.8 eV2
When is Δm^2_{41} no longer “large”?

• However, the limit on $|U_{\mu 4}|^2$ is driven by the low $|U_{\tau 4}|^2$ region.
 – In this region, the dominant samples are Sub-GeV muons
 – Almost no power comes from Up–μ

• For these samples, the “large” assumption is ~always valid so $|U_{\mu 4}|^2$ limit really is a vertical line in Δm^2 to a good approximation
Our Matter Effect Model

- The μ to μ probability is fairly simple:

$$P_{\mu\mu} = (1 - d_{\mu})^2 |\tilde{S}_{22}|^2 + d_{\mu}^2$$

- Get $|S_{22}|^2$ by diagonalizing the sum of the vacuum and matter Hamiltonians:

$$H^{(2)} = H_{sm}^{(2)} + H_s^{(2)} :$$

$$= \frac{\Delta m_{31}^2}{4E} \begin{pmatrix} -\cos 2\theta_{23} & \sin 2\theta_{23} \\ \sin 2\theta_{23} & \cos 2\theta_{23} \end{pmatrix} \pm \frac{G_F N_n}{\sqrt{2}} \begin{pmatrix} |\tilde{U}_{s2}|^2 & \tilde{U}_{s2}^* \tilde{U}_{s3} \\ \tilde{U}_{s2} \tilde{U}_{s3}^* & |\tilde{U}_{s3}|^2 \end{pmatrix}$$
Our Matter Effect Model

• This gives us a \(\sim\)familiar matter-effect probability

\[
|\tilde{S}_{22}|^2 = 1 - \sin^2(2\theta_m) \sin^2(f_m L)
\]

\[
f_m = \sqrt{A_{32}^2 + A_s^2 + 2A_{32}A_s (\cos(2\theta_{23}) \cos(2\theta_s) + \sin(2\theta_{23}) \sin(2\theta_s))}
\]

\[
E_{1,2}^m = \pm f_m
\]

\[
\sin 2\theta_m = \frac{A_{32} \sin(2\theta_{23}) + A_s \sin(2\theta_s)}{f_m}
\]

\[
A_{32} = \frac{\Delta m_{31}^2}{4E}
\]

\[
A_s = \pm \frac{G_F N_n}{2\sqrt{2}}
\]

\[
\sin 2\theta_s = \frac{2\sqrt{d_\mu d_\tau d_s}}{(1 - d_\mu)}
\]

\[
\cos 2\theta_s = \frac{d_\tau - d_\mu d_s}{(1 - d_\mu)}
\]
Oscillation probabilities with sterile neutrinos for SuperK with the following assumptions:

1 Assumptions and Definitions

- So far, the 3M matter matrix as based on this Hamiltonian:

\[H \]

For the parameterization used:

\[U = \begin{pmatrix} | & | & | \\ e & \mu & \nu \\ | & | & | \end{pmatrix} \]

For details, see Sects. 4.1 (1): $\|2\|_{\pm}$ and 4.1 (2): $\|2\|_{+}

- Only 1 additional sterile neutrino

\[\begin{pmatrix} \mu \\ \\nu \\ \\nu \end{pmatrix} \]

is left generic.

\[P_{\mu \mu} = (1 - d_{\mu})^2 |\tilde{S}_{22}|^2 + d_{\mu}^2 \]

\[P_{\mu \tau} = (1 - d_{\mu})(1 - d_{\tau}) + (d_{\mu}(1 - d_{\mu}) - d_{s}(1 + d_{\mu})) |\tilde{S}_{22}|^2 - \sqrt{d_{\mu}d_{\tau}d_{s}}(\tilde{S}_{23}\tilde{S}_{22}^* + \tilde{S}_{23}^*\tilde{S}_{22}) \]

\[P_{\mu \nu} = (1 - d_{\mu})(1 - d_{s}) + (d_{\mu}d_{s} - d_{\tau}) |\tilde{S}_{22}|^2 + \sqrt{d_{\mu}d_{\tau}d_{s}}(\tilde{S}_{23}\tilde{S}_{22}^* + \tilde{S}_{23}^*\tilde{S}_{22}) \]

\[|\tilde{S}_{22}|^2 = 1 - \sin^2(2\theta_m) \sin^2(f_mL) \]

\[(\tilde{S}_{23}\tilde{S}_{22}^* + \tilde{S}_{23}^*\tilde{S}_{22}) = -2 \sin(2\theta_m) \cos(2\theta_m) \sin^2(f_mL) \]
Our Parameters: $|U_{\mu4}|^2$

- Amount mixing between ν_μ and the sterile mass state ν_4
- Primary effect is extra ν_μ disappearance at all path lengths
- Is directly comparable to SBL measurements of ν_μ disappearance ($\theta_{\mu\mu}$) and indirectly to the MB/LSND appearance signal ($\theta_{\mu e}$)
- With more sterile neutrinos, becomes a more generic parameter d_μ, but out limit is still applicable:

$$d_\mu = \frac{1 - \sqrt{1 - 4A}}{2},$$

$$A = (1 - |U_{\mu4}|^2 - |U_{\mu5}|^2 - |U_{\mu6}|^2)(|U_{\mu4}|^2 + |U_{\mu5}|^2 + |U_{\mu6}|^2)$$

$$+ |U_{\mu4}|^2 |U_{\mu5}|^2 + |U_{\mu4}|^2 |U_{\mu6}|^2 + |U_{\mu5}|^2 |U_{\mu6}|^2.$$

Conrad, et. al. hep-ex:1207.4765
Our Parameters: $|U_{\tau 4}|^2$

• Amount mixing between ν_τ and the sterile mass state ν_4

• Controls $\nu_\mu \rightarrow \nu_\tau$ vs. $\nu_\mu \rightarrow \nu_s$ fraction
 – Previous SK sterile measurements have implicitly limited this parameter

• This parameter \(\sim\) scales the size of sterile-NC matter effects

• Also responsible of NC disappearance over long baselines

• Private to long-baseline and atmospheric measurements
 – But still interesting for understanding atmospheric oscillations