Primary Vertex Resolution Studies and Impacts on Charm Reconstruction

Matthew Kelsey

Introduction

Collision position important for reconstructing heavy-flavor (HF) $\underset{\kappa}{\leftarrow}$ decays

- S/B greatly improved with reconstructing secondary HF decay vertices
- Hadronization studies via $\Lambda_c(\rightarrow pK\pi)$ ($c\tau \sim 60 \ \mu m$) production in e-A collisions
- Enabling of bottom reconstruction with displaced $D^{0/+}$, e, and J/ψ
- HF jet tagging

Current estimate of transverse and longitudinal beam constraints not "optimal" for heavy-flavor reconstruction

- O(cm) in z and ~60 μ m x 10 μ m in y-x

Primary vertex (PV) resolution driven by track multiplicity (eff.) and pointing resolution

- e - p(A) collisions expected to have lower multiplicity w.r.t. p(A) - p(A)- All-silicon tracker poised for better PV resolution (See Rey's nice ongoing studies)

Primary Vertex

Basic Outline of PV Studies

Simulated e-p collisions with PYTHIA6.4 Consider all charged π ,K, and p with $|\eta| < 1,3$ Assume 100% tracking eff.

> Track momentum and position smeared using detector matrix <u>https://physdiv.jlab.org/</u> <u>DetectorMatrix/</u>

PYTHIA 6.4 Setup

EIC tune provided by BNL group (https://wiki.bnl.gov/eic/index.php/PYTHIA)

Minimum $Q^2 = 1$ (GeV²)

No radiative corrections

Simulated beam energies (in GeV):

resolution studies

Subprocesses included

Subprocess	#	Description
soft VMD		
$V N \rightarrow V N$	91	elastic VMD
$V N \rightarrow X N$	92	single-diffractive VMD
$V N \rightarrow V X$	93	single-diffractive VMD
$V N \rightarrow X X$	94	double-diffractive VMD
$V N \rightarrow X$	95	soft non-diffractive VMD low-pT
QCD 2→2		
	96	semihard QCD 2→2
RESOLVED (hard VMD and anomalous)		
$\mathbf{q}\mathbf{q} ightarrow \mathbf{q}\mathbf{q}$	11	QCD 2 \rightarrow 2(q)
q qbar \rightarrow q qbar	12	
q qbar \rightarrow gg	13	
gq ightarrow gq	28	
qg → qg	28	QCD 2 \rightarrow 2(g)
$gg \rightarrow q \ qbar$	53	
gg → gg	68	
DIRECT		
$\gamma \ast q \to q$	99	LO DIS
γ∗T q → qg	131	(transverse) QCDC
$\gamma * L \ q \to qg$	132	(Iongitudinal) QCDC
$\gamma *T g \rightarrow q q bar$	135	(transverse) PGF
$\gamma * L g \rightarrow q q bar$	136	(longitudinal) PGF

Particle Multiplicity

Multiplicity higher in heavy-flavor tagged events (note not removing HF daughters) Good pointing resolution beyond $|\eta| > 1$ would help significantly in average multiplicity

PV Fitting Routine

- 1. Charged π , K, and p within $|\eta| < 1$
- 2. Project particle along trajectories to x=y=0 seed
- 3. Least squares fit to vertex x-y positions using all particle DCA_T
- 4. Project particle along trajectories to new DCA_T w.r.t. fitted vertex x-y
- 5. Least squares fit to vertex z position using all particle DCA_z

6

PV Resolution

Longitudinal resolution worse due to fitting routine, can be improved (i.e., compounding $r\phi$ errors to z dimension)

Average $r\phi$ resolution

- $|\eta| < 1 \pmod{20 \mu m}$
- $|\eta| < 3 \text{ (mult.)} \sim 9 \rightarrow 16 \text{ } \mu\text{m}$

7

D^0 Reconstruction (w/o PV Reco.)

$D^0 \rightarrow K\pi$

- All $K\pi$ combinations taken from smeared PYTHIA output
- Backgrounds purely combinatorial and partially reconstructed charm decays

S/B fairly good compared to:

- p+p: $1/100 @ \sqrt{s} = 200 GeV$
- A+A: 1/10000 @ $\sqrt{s_{NN}}$ = 200 GeV

Note: e(20 GeV) + p(100 GeV) $|\eta| < 3$

D⁰ Topological Variables

Only transverse impact parameters (d_0) looked at

Possibility to add longitudinal dimension for additional improvement

Using a $r\varphi$ vertex resolution of 20 µm

"By-eye" cuts chosen:

 $\cos(artheta_{
m r \phi}) > 0.98$

 $dL > 40 \ \mu m$

pair d $0 < 150 \ \mu m$

No optimization or p_T dependence

Modest signal efficiency with "by-eye" cuts

 $B \rightarrow D^0/e$ Reconstruction

Bottom reconstruction enabled using distance-of-closest approach of D^0/e candidates w.r.t. PV Good separation of prompt and $B \rightarrow D^0/e$

M. Kelsey

rrrrr BERKELEY LAB

Summary

HF reconstruction

Can achieve a PV r φ position resolution O(20 μ m) using a rudimentary PV fitter

Decent longitudinal resolution can probably be achieved with some iterative fitting routine

of bottom hadrons

To-do: Perform PV resolution studies with full detector simulation

- Expected collision distribution not confined enough to use to constrain PV location for

- Using vertexing in charm reconstruction can significant improve S/B and enable studies

Backup slides follow