All-Si tracker studies Progress Update

Rey Cruz-Torres

LBNL EIC Meeting
09/01/2020

Outline

- Complementing All-Si tracker
- Azimuthal momentum-resolution asymmetry in hadron direction

To Recap:

* Started exploring GEMs to complement All-Si tracker in forward region.
GEM Parameters:
$\eta_{\text {min }}=1.40$
$\eta_{\max }=3.69$
z position $=300 \mathrm{~cm}$ \# sectors = 8
GEM spatial resolution:

$$
\begin{aligned}
& \sigma(\hat{r})=50 \mu \mathrm{~m} \\
& \sigma(\hat{\phi})=50 \mu \mathrm{~m}
\end{aligned}
$$

To do:

* Add RICH volume between All-Si tracker and forward GEM
* Add Backward GEM

RICH geometry details from Evaristo Cisbani

 (evaristo.cisbani@roma1.infn.it)
All-Si tracker

GEM

GEM and RICH effect on momentum resolution

Beast (3.0 T), $25.0<\mathrm{p}<30.0 \mathrm{GeV} / \mathrm{c}$

GEM and RICH effect on momentum resolution

GEM and RICH effect on momentum resolution

Beast (3.0 T), $25.0<p<30.0 \mathrm{GeV} / \mathrm{c}$

Momentum resolution for 3 momentum bins

Beast (3.0 T), 25.0 < p < 30.0 GeV/c

From GEM to Si disk

Explore possibility of using a Si disk instead of a GEM

Complementing All-Si tracker with other detectors

Beast (3.0 T), $25.0<p<30.0 \mathrm{GeV} / \mathrm{c}$

Complementing All-Si tracker with other detectors

Beast (3.0 T), $25.0<p<30.0 \mathrm{GeV} / \mathrm{c}$

Summary and Conclusions

- Added GEMs in the available space at backward pseudorapidities.
- Implemented "effective" RICH geometry between All-Si tracker and forward GEM.
- $50 \mu \mathrm{~m}$ GEM have strong impact on momentum resolution at higher momenta and pseudorapidities.
- Replacing GEM with Si disk has a more significant impact in the backward region.

Outline

- Complementing All-Si tracker
- Azimuthal momentum-resolution asymmetry in hadron direction

Introduction

- B field rotated by 25 mrad in hadron-going direction
- $\int B \cdot d l$ depends on ϕ
- Assess asymmetry impact on momentum resolution

Simplifying the geometry

The realistic Berkeley All-Si tracker is not azimuthally symmetric:

B field: uniform 3.0 T
Silicon disks
$z=25,49,73,97,121 \mathrm{~cm}$
$r_{\text {min }}=0$
$r_{\text {max }}=44 \mathrm{~cm}$
pixel size $=20 \mu \mathrm{~m}$
material $=0.3 \% \mathrm{X} / \mathrm{X}_{0}$ each

Rotation

Momentum resolutions before rotation

$3.4<\eta<3.6$

$3.6<\eta<3.8$

$3.8<\eta<4.0$

Before rotating
(perfect azimuthal symmetry)

Momentum resolutions after rotation

$3.6<\eta<3.8$

$3.2<\eta<3.4$

$3.8<\eta<4.0$

$3.4<\eta<3.6$

After rotating momentum vectors by 25 mrad about y axis

Detector layout (Si disks)

B field: uniform 3.0 T

IIIII
 Si disks

Silicon disks
$z=25,49,73,97,121 \mathrm{~cm}$
$r_{\text {min }}=0$
$r_{\text {max }}=44 \mathrm{~cm}$
pixel size $=20 \mu \mathrm{~m}$
material $=0.3 \% \mathrm{X} / \mathrm{X}_{0}$ each

Detector layout (Si disks + GEM)

IIIII
 RICH
 Si disks

B field: uniform 3.0 T

Silicon disks

$z=25,49,73,97,121 \mathrm{~cm}$
$r_{\text {min }}=0$
$r_{\text {max }}=44 \mathrm{~cm}$
pixel size $=20 \mu \mathrm{~m}$
material $=0.3 \% \mathrm{X} / \mathrm{X}_{0}$ each

GEM

z position $=300 \mathrm{~cm}$
$\sigma(\hat{r})=50 \mu \mathrm{~m}$
$\sigma(\hat{\phi})=50 \mu \mathrm{~m}$

RICH

Momentum resolutions after rotation

$3.6<\eta<3.8$

$3.2<\eta<3.4$

$3.8<\eta<4.0$

$3.4<\eta<3.6$

After rotating momentum vectors by 25 mrad about y axis

Momentum resolutions after rotation

Summary and Conclusions

- Azimuthal momentum-resolution asymmetry needs to be taken into account in the hadron direction
- Significant momentum-resolution deterioration at higher momenta for $\phi \sim 0$
- Momentum resolution loss is recoverable with auxiliary tracking

Backup slides

Placement of GEM in forward region

Placement of GEM in forward region

RICH parametrization

Info from Evaristo Cisbani (evaristo.cisbani@roma1.infn.it)

Main components and geometry baseline of one (out of 6) dRICH sector: yellow: aerogel

- green: optical filter
- blue: spherical mirror
- black: photosensor array (out of charged particles acceptance)
- pink: beam pipe region.

Mylar	Aerogel	PMMA	$\mathrm{C}_{2} \mathrm{~F}_{6}$ gas

RICH parametrization in Fun4All

$\mathrm{C}_{2} \mathrm{~F}_{6}$ gas

Carbon Fiber Epoxy

GEM and RICH effect on momentum resolution

Beast (3.0 T), $25.0<\mathrm{p}<30.0 \mathrm{GeV} / \mathrm{c}$

GEM and RICH effect on momentum resolution

$\operatorname{BaBar}(1.4 \mathrm{~T}), 25.0<p<30.0 \mathrm{GeV} / \mathrm{c}$

Momentum resolution for 3 momentum bins

