All-Si tracker studies Progress Update

Rey Cruz-Torres

LBNL EIC Meeting 09/01/2020

1

Outline

Complementing All-Si tracker

Azimuthal momentum-resolution asymmetry in hadron direction

To Recap:

* Started exploring GEMs to complement All-Si tracker in forward region.

To do: * Add RICH volume between All-Si tracker and forward GEM * Add Backward GEM

RICH geometry details from Evaristo Cisbani

Beast (3.0 T), 25.0 c

Momentum resolution for 3 momentum bins

n

From GEM to Si disk

Explore possibility of using a Si disk instead of a GEM

Complementing All-Si tracker with other detectors

Complementing All-Si tracker with other detectors

Beast (3.0 T), 25.0 < p < 30.0 GeV/c

Summary and Conclusions

- Added GEMs in the available space at backward pseudorapidities.
- Implemented "effective" RICH geometry between All-Si tracker and forward GEM.
- 50 μm GEM have strong impact on momentum resolution at higher momenta and pseudorapidities.
- Replacing GEM with Si disk has a more significant impact in the backward region.

Outline

Complementing All-Si tracker

Azimuthal momentum-resolution asymmetry in hadron direction

Introduction

- B field rotated by 25 mrad in hadron-going direction $\int B \cdot dl$ depends on ϕ
- Assess asymmetry impact on momentum resolution

Simplifying the geometry

The realistic Berkeley All-Si tracker is not azimuthally symmetric:

B field: uniform 3.0 T

Silicon disks z = 25, 49, 73, 97, 121 cm $r_{min} = 0$ $r_{max} = 44 \text{ cm}$ pixel size = 20 μ m material = 0.3% X/X₀ each

Rotation

Momentum resolutions before rotation

Momentum resolutions after rotation

Detector layout (Si disks)

B field: uniform 3.0 T

Silicon disks z = 25, 49, 73, 97, 121 cm $r_{min} = 0$ $r_{max} = 44 \text{ cm}$ pixel size = 20 μ m material = 0.3% X/X₀ each

Detector layout (Si disks + GEM)

B field: uniform 3.0 T

Silicon disks z = 25, 49, 73, 97, 121 cm $r_{min} = 0$ $r_{max} = 44 \text{ cm}$ pixel size = 20 μ m material = 0.3% X/X₀ each

GEM z position = 300 cm $\sigma(\hat{r}) = 50 \ \mu m$ $\sigma(\hat{\phi}) = 50 \ \mu m$

Momentum resolutions after rotation

Momentum resolutions after rotation

- Azimuthal momentum-resolution asymmetry needs to be taken into account in the hadron direction
- Significant momentum-resolution deterioration at higher momenta for $\phi \sim 0$
- Momentum resolution loss is recoverable with auxiliary tracking

Backup slides

Placement of GEM in forward region

Placement of GEM in forward region

RICH parametrization

Info from Evaristo Cisbani (evaristo.cisbani@roma1.infn.it)

Main components and geometry baseline of one (out of 6) dRICH sector: yellow: aerogel

- green: optical filter
- blue: spherical mirror
- black: photosensor array (out of charged particles acceptance)
- pink: beam pipe region.

Beast (3.0 T), 25.0 c

BaBar (1.4 T), 25.0 c

Momentum resolution for 3 momentum bins

BaBar (1.4 T), 4.0 c

