Vertexing-configuration study

Rey Cruz-Torres LBNL EIC Meeting 10/13/2020

Motivation

Design of optimal vertexing-layer configuration for All-Silicon tracker

Two parameters (#layers and material budget) changing from blue to green

Introduction and goals

Design of optimal vertexing-layer configuration for All-Silicon tracker Doing these checks with 'standard' All-Si tracker is costly

- 1) Define geometry variations in ElCroot
- 2) Export geometry in TGeo format
- 3) Load in Fun4All to run simulations
- * Need a TGeo file per geometry variation

Introduction and goals

Design of optimal vertexing-layer configuration for All-Silicon tracker

Doing these checks with 'standard' All-Si tracker is costly

Solution: define simplified geometry directly in Fun4All \rightarrow capture the essential features but with more flexibility to 'tweak' detector parameters

Introduction and goals

Design of optimal vertexing-layer configuration for All-Silicon tracker

Doing these checks with 'standard' All-Si tracker is costly

Solution: define simplified geometry directly in Fun4All \rightarrow capture the essential features but with more flexibility to 'tweak' detector parameters

0.55% X/X0 -> tracking layers

Outline

- 1) Performance of different vertexing configurations
- 2) Comparison to fast simulations
- 3) Comparison to physics "requirements"

Outline

1) Performance of different vertexing configurations

- 2) Comparison to fast simulations
- 3) Comparison to physics "requirements"

$2^3 - 1$ possible vertexing combinations

Three vtx layer turned on:

Two vtx layers turned on:

3.0 T, 0.0 < $|\eta|$ < 1.0, 0.05% X/X $_{_{0}}$, 10 μ m pixel

 $3.0 \text{ T}, 0.0 < |\eta| < 1.0, 0.05\% \text{ X/X}_0, 10\mu \text{m} \text{ pixel}$

10

Main configurations:

If the **outer** layer fails:

 $(1,1,1) \rightarrow (1,1,0)$ $(1,0,1) \rightarrow (1,0,0)$

* layers "turned off" are actually removed

If the **inner** layer fails:

 $(1,1,1) \rightarrow (0,1,1)$ $(1,0,1) \rightarrow (0,0,1)$

* layers "turned off" are actually removed

2

2

3

4 p [GeV/c]

0.6<mark>∟</mark>

3

4

p [GeV/c]

5

5

6

6

7

0.6**L**

3 4 p_T [GeV/c]

5

6

2

0.6<mark>L_</mark>

3 4 p_T [GeV/c]

5

6

2

13

Outline

- 1) Performance of different vertexing configurations
- 2) Comparison to fast simulations
- 3) Comparison to physics "requirements"

Comparison to fast simulations

B=3.0T, 10 μ m pixel, vtx 0.05% X/X₀, barrel 0.5% X/X₀

Outline

- 1) Performance of different vertexing configurations
- 2) Comparison to fast simulations

3) Comparison to physics "requirements"

Comparison to physics "requirements"

parametrizations: https://indico.bnl.gov/event/9297/

Comparison to physics "requirements"

parametrizations: https://indico.bnl.gov/event/9297/

Summary and Conclusions

For $p_T < 6 \text{ GeV}/c$

- Found small (<10%) differences between 111 and 101 configurations.
- Overall, 101 offers slightly better DCA resolutions.
- 111 only outperforms 101 when the outer layer fails (but differences are still small).
- 101 also cheaper (+less material budget)

Ad: Simplified geometry

- Full all-silicon tracker geometry (except for aluminum support structure) implemented in Fun4All.
- Easily modifiable
- Each layer is made of Si (scaled to the appropriate material budget)

Proposed detector baseline

Backup

Effect of misalignment on vertexing

