All Silicon Tracker Jets

Jets in e+P PYTHIA Simulation

- PYTHIA 8
 - $Q_{\min}^2 \ge 16 \, (\text{GeV}/c^2)^2$ - $\sqrt{s} = 89 \, \text{GeV}$
 - Electron beam: 20 GeV
 - Proton beam: 100 GeV

- Jets
 - Charged Jets
 - $E_{\rm Reco}^{\rm Jet}$ > 4.0 GeV
 - Anti- $k_{\rm T} R = 1.0$
 - ΔR (jet-electron) > 0.5
 - "Electron Veto"

- Jet Constituents
 - $N_{\text{constituents}} \ge 4$
 - $p_{\rm T}^{\rm constituent} \ge 60 \text{ MeV/}c$
 - $|\eta^{\text{constituent}}| \neq 1.1$
 - Central barrel meets forward layers
 - <u>Update:</u> $1.06 < |\eta| < 1.13$

Fernando TA

12/22/20

Overview

- Response Matrix
 P^{Truth,ch}_{Jet} vs. P^{Reco}_{Jet}
- Momentum Resolution
 - $(P_{\text{Jet}}^{\text{Truth,ch}} P_{\text{Jet}}^{\text{Reco}})/P_{\text{Jet}}^{\text{Truth,ch}}$
 - Sensitive to $N_{\rm Missed}$ Constituents
- Angular Resolutions
 - dθ, dφ

Fernando TA

12/22/20

Non-Gaus Momentum Resolution

What kind of jets make up that wider distribution?

Eernando IA	

11/30/2020

Fernando TA

12/22/20

No. Missed Jet Constituents VS. dP/P

12/22/20

Fernando TA

Jet Resolutions

8

- $N_{\rm Missed} < 1$
 - dP/P, $d\theta$, and $d\phi$ distributions are fit to gaus
 - σ and its error are extracted from the fits

• $N_{\text{Missed}} \ge 1$

- The simple standard deviation of the dP/P is taken
- $\mathrm{d}\theta$ and $\mathrm{d}\varphi$ widths () are still extracted from gaus fits

5×10⁻ 9×10⁻¹ 8×10⁻ -1.0 < lηl < 0.0 7×10⁻ 4×10⁻ $0.0 < |\eta| < 1.0$ 2 6×10⁻ **---** 1.0 < lηl < 3.0 $[\text{perm}_{2\times10^{-1}}]_{\theta}$ d*P*/*P*[%] $d\phi$ [mrad] 3×10⁻ 3×10⁻ 9×10⁻ 8×10⁻¹ 2×10⁻ 5 10 15 20 5 10 15 20 5 10 15 20 P [GeV/c] P [GeV/c] P [GeV/c] 5×10⁻ 9×10⁻ 4.0 < P < 6.0 GeV/c 6.0 < P < 8.0 GeV/c 8×10⁻ 8.0 < P < 10.0 GeV/c 7×10⁻ 10.0 < P < 12.0 GeV/c 4×10⁻ 2 12.0 < P < 20.0 GeV/c 6×10⁻ [%]*d/d*p [pe.ru] 4×10^{−1} $d\phi$ [mrad] 3×10⁻¹ 9×10⁻¹ 8×10⁻¹ 2×10⁻ 0 η -2 0 η 2 0 η -3 -2 -1 2 3 -1 -2 -1 1 2 1 -3 1 3 -3 3

Jet Resolutions for $N_{\text{Missed}} < 1$

Fernando TA

12/22/20

9

70000

60000

 $N_{\rm Missed} < 1$

ver_PTrueJet 199918 -0.02095 0.07553

PRecoJet_c Entries Mean Std Dev

•

Fernando TA

12/22/20

Potential Next Steps

- Finesse better poisson or landau fits to $N_{\text{Missed}} \ge 1 \text{ d}P/P$ distributions
- Re-run simulation
 - Save more reconstructed constituent information to branches
 - Understand cause missing constituents
 - More statistics for higher momentum jets

Response to EIC UG Feedback 12/21

More Informed η cut

12/22/20

Fernando TA

Jet $\eta_{\text{Iet}}^{\text{Reco}}$ with <u>NO</u> $\eta_{\text{const.}}$ cut

The red curve has a large peak in the region where the barrel meets the forward layers

Fer	()	

12/22/20

More informed $p_{\rm T}^{\rm const.}$ cut in progress

Backup

Full Jet Momentum Response

Full Truth vs. Charged Truth

• Small Difference in dP/P, most likely due to different cut flows (min pT, constituent η , etc.)

Fernando TA

12/22/20

h rn	n	\mathbf{a}	
		U	
		\smile	

12/22/20

Full Truth Jets with $N_{\rm neutral}$ = 0 originally

Truth Jet η

Neutral subtracted Jets used in dP/P

Truth Jet η

Fernando TA

12/22/20

Are lost constituents and poor dP/P due to low pT constituents?

11/30/2020

Answer: Probably Not

Momentum Resolution enforcing Constituent p_T cut of 1.0 GeV/c

Normalized Counts

Jet Component pT distributions

Jets with a missing constituent tend to have constituents with slightly lower pT

Barrel/Endcap Constituent Cut

- Cut on jets with any constituent within $1.0 < |\eta| < 1.2$
- The central barrel meets the forward-layers at $|\eta|\approx 1.1$

Jet Component η

No significant Effect (See comparison to small plot with no such cut)

Fernando TA

11/30/2020

Charged Truth Jets

Comparing Jets

Recontsructed Jet $\boldsymbol{\eta}$

Truth Jet η

η

Reconstructed Jet Momentum Comparison

Fernando TA

11/9/2020

Truth Jet Momentum Comparison

Fernando TA

11/9/2020

 Q^2

Counts

Fernando TA

11/9/2020