EIC Particle Identification in Heavy Flavor Study

Wenqing Fan 03/09/21

Heavy flavor study at EIC

 Heavy flavor sensitive to the gluon dynamics

arXiv: 2102.08337

- Inclusive heavy-flavor hadron production in unpolarized e+p/A collisions to constrain gluon (nuclear) parton distribution functions (PDFs) in nucleons and nuclei, especially in the large Bjorken-x (x_B) region ($x_B \gtrsim 0.1$).
- Heavy-flavor hadron pair (e.g. $D+\overline{D}$) production to constrain gluon transverse momentum dependent (TMD) PDFs in both unpolarized and transversely-polarized experiments.
- Heavy-flavor hadron double spin asymmetry $(A_{\rm LL})$ measurement to constrain the gluon helicity distributions $(\Delta g/g)$.
- Heavy-flavor hadrochemistry (abundance between different heavy-flavor hadron states) studies to better understand heavy-quark hadronization as well as the impact of cold nuclear matter effects in e+A collisions.

Charm reconstruction with exclusive c hadrons

PID at different rapidity

Central Arm	Range (GeV/c)		
Technology	e - π	π-Κ	
$\frac{dE}{dx}$	0 - 2	0 - 3	
$\frac{dE}{dx}$ (Cluster Count)	0 - 10 ??	0 - 15	
DIRC	0.00048 - 1	0.47 - 6	
TOF (LGAD)	0 - 1	0.00 - 5	
HBD	0.0150 - 4.17	N/A	

Small angle detectors

Electron Arm	Range (GeV/c)		Hadron Arm	Range (GeV/c)		
Technology	e - π	π - Κ	Technology	e - π	π-Κ	
dRICH (aerogel)	0.0025 - 5	2.46 - 16	CsI RICH	0.0150 - 20	14.75 - 50	
dRICH (gas)	0.0127 - 18	12.34 - 60	dRICH (aerogel)	0.0025 - 5	2.46 - 16	
dRICH (overall)	0.0025 - 18	2.46 - 60		0.0023 = 3		
HBD	0.0150 - 4.17	_	dRICH (gas)	0.0127 - 18	12.34 - 60	
mRICH	0.0025 - 2	2.00 - 6	dRICH (overall)	0.0025 - 18	2.46 - 60	
TOF (LAPPD 4m, 5ps)	0 - 3	0.00 - 16	TOF (LGAD)	0 - 1	0.00 - 5	
TOF (LAPPD 3m, 10ps)	0 - 1.8	0.00 - 10	TOF (LAPPD 4m 5ps)	0 - 2.5	0.00 - 16	
TRD	1.0 - 270.0	_	TRD	1.0 – 270.0	_	

RICH detectors have firing threshold at low momentum

Low p threshold for RICH detectors

EICUG YR

				Thr	reshold	GeV/	c)
Deterctor Matrix		radiator	index	e	π	K	р
		quartz (DIRC)	1.473	0.00048	0.13	0.47	0.88
Barrel	< 6 GeV	aerogel (mRICH)	1.03	0.00207	0.57	2.00	3.80
Forward	< 10 GeV	aerogel (dRICH)	1.02	0.00245	0.69	2.46	4.67
Deelawaad		C_2F_6 (dRICH)	1.0008	0.01277	3.49	12.34	23.45
васкward	< 50 Gev	CF ₄ (gRICH)	1.00056	0.01527	4.17	14.75	28.03

Table 11.23: Table of Cherenkov thresholds for various media.

Effect on D⁰ and D*

Effects on Λ_c

K/p separation
DIRC acceptance — 90cm
(solid: 1.4T, dash: 3T)
p_T > 0.3 x B x R/2

ulation study — Wenqing Fan

Detector effects — PID

* Using fast simulation to check the detector effects on D0 and Λ_c reconstruction

Particle identification (PID)

- No PID
- Detector Matrix (DM) PID: no low p cutoff (can be covered by TPC and TOF)
- DIRC+dRICH: with low p cutoff (1.4T and 3T), including or excluding mis-identified particles
- Caveat: assume perfect electron ID, ignore muons

Detector effects — PID

- Fast simulation for DIRC and dRICH
 - If particles can not reach DIRC (p_T > 0.19GeV for 1.4T, 0.40GeV for 3T), can be smaller if put DIRC closer to All-Si
 - If particles momentum is below the firing threshold for π /K/p

Veto mode: if track momentum above pion threshold but not firing the detector, then it cannot be pion

True particle	Pion	Kaon		Proton	
p < 0.13 (0.69)	prob(π/K/p) = 0.7, 0.2, 0.1				
p < 0.47 (2.46)		prob $(\pi/K/p) = 0, 0.6, 0.4$			
p < 0.88 (4.67)	prob(π/K/p) = 1, 0, 0	$prob(\pi/K/p) = 0, 1, 0$	proh(-1	
p < 6 (50)			μιορ(μ	(x, x, p) = 0, 0, 1	

probability assigned according to multiplicity of different charged particles

EIC simulation study — Wenqing Fan

Λ_c at mid-rapidity

No PID: pairing all the charged hadron with opposite charge DM PID: pairing K⁻π⁺p+ or K⁺π⁻ p⁻ Cutoff: with low p cutoff, pairing identified π with tracks most likely to be K (prob(K)>0.5) and tracks that can be p (prob(p)>0.1) All ID: with low p cutoff, only pair identified particles

Λ_c at mid-rapidity

Comb. bkg too big when NO PID

Stat. Err. become worse from DM PID to PID with low p cutoff, ~50% effect in forwardrapidity

Λ_c at forward-rapidity

Comb. bkg too big when NO PID

Stat. Err. become worse from DM PID to PID with low p cutoff, ~200% effect in forwardrapidity

Λ_c at backward-rapidity

Comb. bkg too big when NO PID

Stat. Err. become worse from DM PID to PID with low p cutoff, ~200% effect in backward-rapidity

Effect of magnetic field

1.4T to 3T

- SG drops because of the acceptance
- BG drops because of a better momentum resolution (narrower signal region) and fewer low p_T tracks

70 Pythia, e+p @ 10+100 GeV, Min Bias -3.0 < η < −1.0 **-1.0 <** η **< 1.0 1.0 <** η **< 3.0** 1.8 0.2 1.6 ۸ 1.4 <u>م</u> Low p cutoff using ۸ 1.2 2.0 1 **DIRC+dRICH** as **PID** GeV/c 0.8 E does not affect D⁰ 0.6 ŧ 0.4F significantly 0.2 1.8 2.0 < 1.6 |---|---|---|---|---|---|---|---|---Stat. Err. [%] 1.4 q_ Larger effect at $|\eta| > 1$ 1.2 ۸ 4.0 GeV/c 0.8 0.6 larger effect at low p_T 0.4 0.2 12 4.0 < p_T < 10.0 GeV/c **3T has slightly better** 1.4 T 10 3 T precision comparing 8 not enough to 1.4T 6 statistics 2

No ID

DM

Cutoff All ID

No ID

DM

Cutoff All ID

No ID

DM

Cutoff All ID

19

Thanks!

D⁰ kinematics

EIC simulation study — Wenqing Fan

Charged particle multiplicity

