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LBNL Activities

ATAP, Nuclear Sciences and Engineering

* Active Cryogenic Electronic Envelope (2013)
U.S. Patent No. 10,240,875 (Supercon)
 Commercial off-the-shelf cryogenic components (4k-77k)
ADCs, Amplifiers, Diodes, FPGAs, Laser Diodes, Optical Isolators , Voltage
Regulators, Transistors and Passives
e Field Programmable Gate Array (FPGA) on Cryogenic Environments (first board
2015)
 FPGA operating with COTS ADC (LTC2418)
* FPGA based ADC
* Cryogenic Magnetic Sensors
Acoustic Sensors (Maxim)
Electron Beam Sensor (LDRD)
 160nm Cryogenic ASIC (2018)
16 channels 12b 10MSPS ADC, 1 MSPS 10b ADC, Charge Amplifier, Voltage
Regulator, Strain Gauge, Sea-of-Transistors, Memory (C.Grace, D.Gnani)
* 3t Gen FPGA Test Board (2018)
« 4™ Gen FPGA/DAQ (2019-2020) — LBNL —Fermilab/CD ”/:>| A
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Motivation

Instrumentation of Cryogenic Experiments

Data interface fully digital

Simplification of cryostat feedthrough

Noise reduction

System simplification (no long analog cables
present)

Flexibility

Cost reduction

Increase time of oxide breakdown
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Data Acquisition for Magnet Diagnostics
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Architectures for cryogenic DAQ

Power:

e Switched Capacitor+LDO
* Power over Fiber

e LED supply

Communications:

 JESD

* LVDS

e CMOS

* Ethernet (PHY?)

Over copper or fiber
Single or multiple lanes.
Typically one lane provides
300Mbps

Isolation:

Opto or capacitive = A
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Bypassing the Problem

ACEe - Active Cryogenic Electronic Envelope (Gen 1)
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e For LHe Operation

e Internal Temperature (70k to 100k)
¢ 16 analog channels

e 3000V input multiplexed isolation

e 16 bit ADC providing 1 MSPS per channel
e Low noise ADC, SFDR >100dB

e 3 wires digital interface

e Automatic temperature control

e Internal voltage reference

e 250mW maximum power dissipation
e Non-magnetic components

Power Efficiency(%)
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Alternative: Power Over Fiber

Electro-Optical Power Converter
LED: AA1010SE28Zc 80nm shift at LHe
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Systems with COTS cryogenic components

LN Test

ADCs

» 24b / 20kSPS

 12b / 10MSPS

* 4b / 500MSPS
Amplifiers (up to 500MHz) e
Diodes (HV protection 1A) Slow Amplifier
FPGAs (28nm- 45nm) (Acoustic Instrumentation)
Laser Diodes Optical Isolators
Voltage Regulators

* LDO and SW capacitor
Transistors

 JFET

« HEMT

« MOSFET
Passives

* Capacitors and resistors Fast Amplifier -500MHz
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Basic COTS component
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ASICs for Cryogenics

......

55!,Development time, Not Flexible .
Application Specific, Low Power S
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CryoDAQ

Current versions are capable of dealing with 32 analog channels

Data is transmitted fully digital
System resides inside the cryostat and is capable of operating at 4.2k
Tests were already performed with strain gauges

Two existing versions:
e Strain Gauge (SG) version: 20 SPS per channel

* \Voltage Taps (VT) version: 200kSPS per channel
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. FPGA Based n-bit Analog to Digital Converter
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Reconfigurable Flash Folding Architecture. <
With this architecture it is possible to change
the ADC resolution on the fly.
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1> Test Setup at LBNL
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Threshold (Vth)

For an n-channel enhancement mode MOS transistor, the formula for threshold
voltage is

\/ 280856]NA(2¢F + VSB)
COX

Vih = Ve + 2¢p + ,
where Vg = flat-band voltage, ¢ = bulk potential, ¢, = free-space permittivity, e, =
dielectric constant of silicon, ¢ = electronic charge, N5 = acceptor doping con-
centration, Vsg = substrate bias and C,, = oxide capacitance per unit area. Also,

O _ 1 H /o " p, (x)xdx,

Cox E0€ox

Vig = s —

where ¢, 1s the metal-semiconductor work function, Qr is the fixed charge in the
oxide, &, 1s the relative permittivity of silicon dioxide, p,.(x) is the charge density in
an oxide of thickness 7., varying with distance x in the oxide. For an n-type poly-
silicon gate (STMicroelectronics 2006)

¢ms = _[k In [ND(E)NA]’
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1> Threshold Voltage

VG (V)
Fig. 16. Subthreshold current of MOSFET as a function of temperature from 77 to 296 K.
(After Gaensslen er al. [43].) (Parameters: L. =9 ym; W=87 um; Vy,=0.1 V; V,_, =0 V.

Values, calculated by wusing two-dimensional model: +. Slope =(g/2.3 kT)[C,,/
((-ox + (-'Si + C‘F‘S)]-)
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Artix 7—FPGA (~1x1 cm)

XC7A15T
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> Test Circuits

i+ Agilent Technologies FRI AUG 30 16:16:11 2018

Five stage ring oscillator

Measure Current Mean Min Max Std Dev Count
LUT Freq( | 690MHz 683.21MHz 68OMHz 700MHz 4.6920MHz 79.28k
Rise( | | 440ps 442 .60ps 400ps 500ps 12.882ps 79.28k
Fall( ) 440ps 451.92ps  420ps 500ps 12.532ps 79.28k
Ple-Pko{ | | 315mV 312.55mv  301mV 325mV 3.9819mv  79.28k

VCCint =2.1V
VCCO =2.8V
VCCAUX = 2.8V
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Frequency of the ring oscillator with five stages at PP ml
different temperatures.
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Artix 7 — Seven stages ring oscillator
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FPGA Performance Highlights
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Ring Oscillator Temperature vs Frequency
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FPGA Performance Highlights

Ring Oscillator Frequency versus VCCint
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FPGA Performance Highlights

* COperates at 4.2K reliably both in Liquid Helium and on cold finger
(at ~4.2K). Over 28 thermal cycles and 700 hours cold (~4K). No
degradation detected. Even when submitted to thermal shock
(dipping in LN);

* 60 mW power consumption with 3 stage ring oscillator +XADC
running at 400MHz;

150 mW power consumption with 3 stage ring oscillator +XADC
running at 1000MHz;

550 mW power consumption with 3 stage ring oscillator +XADC
running at 1400MHz (max achieved clock) LVCMOS 1.8;

* Most of the power (80% for the 1.4GHz) is dissipated at the 10
driver with 50 Ohms termination, temperature at the FPGA went up
to 10K;

* For the 4bit ADC at 200MSPS power consumption was 300mW with/—‘\l A

Chipscope in. Estimated to be around 140 mW without Chipscope; III|
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> BGA Reliability

Cross-polarized images of 256 1/O reballed SnPb BGA Assemblies (as-received)

Cross-polarized images of 256 VO reballed SnPb BGA Assemblies (after TC test)

Cross-polanized images of 256 /0 mixed BGA Assemblies (as-received) Cross-polarized images of 256 1O lead-free BGA Assemblies (after TC test)

Sn/Pb Lead Free

*TEMPERATURE CYCLING RELIABILITY OF
REBALLED AND REWORKED BALL GRID ARRAY
PACKAGES IN SNPB AND SAC ASSEMBLY Lei

A
Nie, Doctor of Philosophy (Ph.D.), 2010 ”/r}l “'|
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Cycle Type

LN Submersion
LHe Submersion
LHe Cold Finger (290K to 4.2K)

BGA Reliability

Number of Typical Total Number
Cycles Cooldown of Hours
Time(s) Cold(Hs)
14 5 300 ~5
6 7000 200000 ~360
8 3000 170000 ~400
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Artix 7 Series

Artix-7 FPGA Product Table

XC7A12T W/NEIl XC7A25T | XC7A35T | XC7A50T | XC7A75T = XC7A100T | XC7A200T

XC7A12T | XC7A15T | XC7A25T a XC7A35T a XC7AS50T >

Logic Cells 12,800 16,640 23,360 33,280 52,160

COMPARE £ Reset €

DSP Slices 40 45 80 90 120
Memory (kb) 720 900 1,620 1,800 2,700
GTP 6.6Gb/s Transceivers 2 4 4 - <

1/0 Pins 150 250 150 250 250

Artix-7 FPGA Product Table

XC7A12T = XC7A15T | XC7A25T @ XC7A35T | XC7A50T | XC7A75T || XC7A100T peley/.visu)

COMPARE £ Reset I XC7A35T [ XC7AS0T [ XC7A75T | XC7A100T | XC7A200T >

Logic Cells 33,280 52,160 75,520 101,440 215,360

DSP Slices 90 120 180 240 740
Memory (kb) 1,800 2,700 3,780 4,860 13,140
GTP 6.6Gb/s Transceivers 4 4 8 8 16

1/0 Pins 250 250 300 300 500

i
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Implemented test structures

e LUT

* |/O (LVCMOS25 operating at 2.8V, 4mA)
* Ring Oscillator

* Counters (8/16 bits)

e Shift register (16 bits)

e LVDS tx/rx communications

 ADC

Evaluated at 290K,77K*,4.2K*
*immersed
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Gen4d CryoDAQ — LBNL-Fermilab

e Large Artix FPGA (28nm)

* 64 Analog channels

* External Clock

* Laser Driver for communications

e LDO’s

* External Clock

* Max operational clock 1GHz

* Expected around 1 W of power
dissipation
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ADC board

e 32 ADCs

e Sampling rate up to 100MSPS (50MHz signals)
e 14bits

* Not tested cold yet
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Possible Issues

 PLL, SERDES,iDelay, XADC (dedicated hardware)

* Asynchronous circuits timing uncertainty

 |/O threshold fluctuation

* Increased power consumption (+40% from room temp
at 4.2K)

* Bump bond detachment with thermal cycles

e Difficult access (inside the cryostat)

* Power consumption
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Conclusions

* Many options available for cryogenic data acquisition
* COTS components can be used

* Growing number of Applications Specific Integrated
Circuits (ASICs) available

» Software developed needed

* More collaboration needed between potential users
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* Digital Magnet
 Ethernet PHY

 Materials SiGe, GaN ...
* Bump bond (Indium)

To ADD

e Simulations/Characterization
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