Superallowed Alpha Decay

Rod Clark

Wave Mechanics and Radioactive Disintegration

R. W. Gurney and E.U. Condon, Nature (London) 122, 439 (1928)

		E _α (MeV)	T _{1/2}
Radium C'	²¹⁴ Po	7.7	160 µs
Radium A	²¹⁸ Po	6.0	3 mins
Uranium	²³⁸ U	4.2	4.5 GYrs

Zur Quantentheorie des Atomkernes

G. Gamow, Z. Phys. 51, 204 (1928)

FRKELEY LAB

Science

Quantitative description of Geiger-Nuttall Rule:

$$\log(T_{1/2}) = a + bQ_{\alpha}^{-1/2}$$

H.Geiger and J.M.Nuttall, Phil. Mag. 22 613 (1911)

Superfluid Tunneling Model (STM)

The Schrödinger equation describing the model is:

$$\left(-\frac{\hbar^2}{2D}\frac{\partial^2}{\partial\xi^2}+V(\xi)\right)\psi_n(\xi)=E_n\psi_n(\xi)$$

 ε = generalized deformation variable

Calculation of decay constant: $\lambda = P \cdot f \cdot T$

P= preformation of decay configurationf = frequency of hitting barrierT = transmission coefficient through barrier

"Nuclear Superfluidity: Pairing in Finite Systems" David M. Brink and Ricardo A. Broglia Cambridge University Press, 2005

F. Barranco, G.F. Bertsch, R.A.Broglia, E.Vigezzi, NPA 512 253 (1990)

Decay Constant

 $\lambda = P f T$

Alpha-particle formation probability,

$$P = |\psi(\xi = 1)|^2 = \left(\frac{\alpha}{\sqrt{\pi}}\right)e^{-\alpha^2}, \qquad \alpha^2 = \sqrt{\frac{DC}{\hbar^2}}$$

Knocking frequency,

Potential parameter, C, is dependent on Q-value

Inertial mass parameter, *D*, depends on pairing gap, *Δ*.

 $f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{c}{D}}$ Transmission through barrier, $T_L = \frac{\rho}{F_L^2(\eta, \rho) + G_L^2(\eta, \rho)}$

\rightarrow Investigate dependencies on Δ , Q, L

Superheavy Nuclei

Science

rrrrr

BERKELEY LAB

Nature 565, 553 (2019).

Alpha Decay of Even-Even Isotopes: Fm to Og

BERKELEY LAB

Modern "Geiger-Nuttall" Formula

Superallowed Alpha Decay

VOLUME 14, NUMBER 4

PHYSICAL REVIEW LETTERS

25 JANUARY 1965

NEW REGION OF ALPHA RADIOACTIVITY*

Ronald D. Macfarlane Department of Chemistry, McMaster University, Hamilton, Ontario, Canada

and

Antti Siivola Lawrence Radiation Laboratory, University of California, Berkeley, California (Received 30 November 1964)

These nuclides represent the first opportunity to study alpha decay from nuclei where the "valence" neutrons and protons are in the same single-particle level, in this case, the $1g_{7/2}$ level. This may give rise to a kind of "superallowed" alpha decay resulting in large reduced alpha widths. At present, we cannot

Science

BERKELEY LAB

K. Auranen et al., Phys. Lett. B 792 (2019) 187

8

Experiment vs. Models

Nucleus	$T_{1/2,\text{expt}}(\alpha)$ (s)	E_{α} (MeV)	$\frac{\log_{10}(T_{1/2,\text{expt}})}{(\text{s})}$	$\frac{\log_{10}(T_{1/2,\text{Royer}})}{(\text{s})}$	$log_{10}(T_{1/2,STM})$ (s)	Δ _{fit} (MeV)	<i>P</i> (×10 ⁻²)
¹¹⁴ Ba	42^{+25}_{-18} [6]	3.480(20) [6]	$1.62^{+0.21}_{-0.24}$	$2.21\substack{+0.14 \\ -0.13}$	$1.98\substack{+0.14\\-0.13}$	$1.74_{-0.28}^{+0.39}$	$1.74_{-0.89}^{+1.63}$
¹¹² Xe	$\begin{array}{c} 338^{+475}_{-234} \\ [7,8] \end{array}$	3.216(7) [7]	$2.53^{+0.38}_{-0.51}$	$2.74^{+0.05}_{-0.05}$	$2.54\substack{+0.05\\-0.05}$	$1.49^{+0.46}_{-0.24}$	$0.98^{+1.70}_{-0.55}$
¹¹⁰ Xe	$0.148^{+0.090}_{-0.087}$ [6]	3.720(20) [6]	$-0.83\substack{+0.21\\-0.38}$	$-0.52\substack{+0.11\\-0.12}$	$-0.71\substack{+0.11\\-0.12}$	$1.58\substack{+0.47 \\ -0.20}$	$1.36^{+1.95}_{-0.60}$
¹⁰⁸ Xe	$58^{+106}_{-23} \times 10^{-6}$ [2]	4.4(2) [2]	$-4.25^{+0.46}_{-0.21}$	$-4.01\substack{+0.96\\-0.89}$	$-4.14\substack{+0.94\\-0.88}$	$1.58^{+1.72}_{-0.63}$	$1.56^{+8.43}_{-1.43}$
¹¹⁰ Te	$2.78(12) \times 10^{6}$ [9,10]	2.624(15) [9]	$6.44\substack{+0.02\\-0.02}$	$6.23^{+0.15}_{-0.14}$	$6.06\substack{+0.15\\-0.14}$	$1.27\substack{+0.09\\-0.07}$	$0.43\substack{+0.17 \\ -0.12}$
¹⁰⁸ Te	4.3(4) [7,8,11]	3.314(4) [11]	$0.63\substack{+0.04 \\ -0.04}$	$0.75\substack{+0.03 \\ -0.03}$	$0.58\substack{+0.03\\-0.03}$	$1.47\substack{+0.04 \\ -0.05}$	$1.00\substack{+0.14\\-0.12}$
¹⁰⁶ Te	$70^{+20}_{-15} \times 10^{-6}_{-6,7,12]}$	4.128(9) [7]	$-4.15\substack{+0.10\\-0.11}$	$-3.85\substack{+0.04\\-0.04}$	$-3.97\substack{+0.04\\-0.04}$	$1.66_{-0.12}^{+0.13}$	$1.98\substack{+0.57 \\ -0.46}$
¹⁰⁴ Te	$<18 \times 10^{-9}$ [2]	4.9(2) [2]	<-7.74	$-7.10^{+0.74}_{-0.70}$	$-7.14_{-0.69}^{+0.76}$	>1.47	>1.65

R.M. Clark et al., Phys. Rev. C 101 034313 (2020)

STM Pair Gaps vs. Expectation

Extracted Alpha-Particle-Formation Probabilities, *P*

However, the "expected" variation of the pairing does lead to an increase in the formation probability of the alpha particle, P, as one approaches N=Z.

R.M. Clark et al., Phys. Rev. C 101 034313 (2020)

Alpha Decay Chain ¹⁰⁸Xe→¹⁰⁴Te→¹⁰⁰Sn

If extra proton-neutron correlations then the effect is likely to be biggest at N=Z. They would show up in unrealistically large values for the fitted pairing gaps.

PHYSICAL REVIEW LETTERS 121, 182501 (2018)

Editors' Suggestion Featured in Physics

Superallowed α Decay to Doubly Magic ¹⁰⁰Sn

K. Auranen,^{1,*} D. Seweryniak,¹ M. Albers,¹ A. D. Ayangeakaa,^{1,†} S. Bottoni,^{1,‡} M. P. Carpenter,¹ C. J. Chiara,^{1,2,§} P. Copp,^{1,3}
H. M. David,^{1,||} D. T. Doherty,^{4,¶} J. Harker,^{1,2} C. R. Hoffman,¹ R. V. F. Janssens,^{5,6} T. L. Khoo,¹ S. A. Kuvin,^{1,7} T. Lauritsen,¹
G. Lotay,⁸ A. M. Rogers,^{1,**} J. Sethi,^{1,2} C. Scholey,⁹ R. Talwar,¹ W. B. Walters,² P. J. Woods,⁴ and S. Zhu¹

ERKELEY LAB

Two events (!) with the average properties: ${}^{108}Xe$

 E_{α} =4.4(2) MeV $T_{1/2} = 58^{+106}_{-23} \text{ } \mu \text{s}$ ^{104}Te E_{α} =4.9(2) MeV $T_{1/2} < 18 \text{ ns.}$

Exclusion Plot for Pairing Gaps

BERKELEY LAB

Summary

Superfluid Tunneling Model

- Able to reproduce known data on alpha decay
- All ingredients (Q_{α} , L, Δ) essential to understanding

In the ¹⁰⁰Sn region

- Alpha preformation is larger near ¹⁰⁰Sn than ²⁰⁸Pb
- Expected due to variation of pair gap
- Current data on N=Z nuclei ¹⁰⁴Te and ¹⁰⁸Xe still leave open possibility of superallowed alpha decay

Future Experiments at FRIB

	108	Xe	¹¹² Ba		
FRIB Phase	Day 1	Max	Day 1	Max	
Primary Beam	¹²⁴ Xe	¹²⁴ Xe	²³⁸ U	²³⁸ U	
Rate	7.6×10 ⁻⁴	3.0×10 ⁻²	1.0×10 ⁻⁶	3.0×10 ⁻³	
Per Day	65	2600	0.1	260	

¹⁰⁸Xe should be feasible on Day One, ¹¹²Ba comes into reach later

Extra Slides

Inertia

$$\left(-\frac{\hbar^2}{2D}\frac{\partial^2}{\partial\xi^2}+V(\xi)\right)\psi_n(\xi)=E_n\psi_n(\xi)$$

Inertial mass parameter,

$$D=-\frac{n^2}{2v}n^2$$

+2

n is the number of level crossings in rearrangement (n=4)

v is the interaction matrix element,

$$v \approx -G \langle BCS | P_{d}^{\dagger} | BCS \rangle \langle BCS | P_{u} | BCS \rangle$$

 $\approx -\frac{G}{4} \langle BCS | P | BCS \rangle^{2} = -\frac{1}{4} \frac{\Delta^{2}}{G},$

Inertial mass parameter, *D*, is dependent on pairing gap, *Δ*.

Potential Energy

$$\left(-\frac{\hbar^2}{2D}\frac{\partial^2}{\partial\xi^2}+V(\xi)\right)\psi_n(\xi)=E_n\psi_n(\xi)$$
$$V(\xi)=\frac{1}{2}C\xi^2$$

$$V(\xi=1) = V_n + V_c - Q = C/2$$

Potential energy parameter, C, is dependent on Q-value

Dependence on Pairing Gap, $\Delta = x\Delta_0$

Even-Z, Odd-N SHN

Using the STM: Variation of Δ with A and Z

First hint that nothing unusual

A. Bohr and B. Mottelson, *Nuclear Structure* (Benjamin, New York, 1975), Vol. 1. P. Vogel, B. Jonson, and P.G. Hansen, Phys. Lett. B **139**, 227 (1984).

STM vs. Experiment

Extracted Values of Δ

What About N=Z?

If extra proton-neutron correlations are contributing then the effect is likely to be biggest with the N=Z chain $^{108}Xe \rightarrow ^{104}Te \rightarrow ^{100}Sn$.

They would show up in unrealistically large values for the fitted pairing gaps.

¹⁰⁸Xe,
$$E_{\alpha}$$
=4.4(2) MeV, $T_{1/2} = 58^{+106}_{-23}$ µs
¹⁰⁴Te, E_{α} =4.9(2) MeV, $T_{1/2} < 18$ ns.

The sum of the alpha energy is better constrained to value of 9.3(1)MeV Also, assuming BCS applies, $\Delta ({}^{108}\text{Xe}) > \Delta ({}^{104}\text{Te})$

In case of pure pairing in single-j shell:

$$\Delta = G_{\sqrt{\frac{n}{2}\left(\Omega - \frac{n}{2}\right)}}$$

Implying maximum of $\Delta(^{108}\text{Xe})=1.32\times\Delta(^{104}\text{Te})$

Exclusion Plot for Pairing Gaps

BERKELEY LAB

New Results from JAEA

Search for α decay of 104 Te with a novel recoil-decay scintillation detector Phys. Rev. C, Y. Xiao et al., Accepted16 August 2019

ABSTRACT

A search for super-allowed α decay of N=Z nuclei104Te and 108Xe was carried out using novel recoil-decay scintillator detector at the tandem accelerator facility at Japan Atomic Energy Agency (JAEA). Inorganic crystal scintillation material of YAP:Ce (Yttrium Aluminium Perowskite) coupled to position-sensitive photo-multiplier tube (PSPMT) was implemented for the first time in radioactive decay experiment. Residues from the fusion-evaporation reaction 58Ni+54Fe \rightarrow 112Xe* were separated by the JAEA Recoil Mass Separator (RMS) and implanted into the YAP:Ce crystal. α decays of neutron-deficient tellurium isotopes were identified and proton-emission of 109I was observed. The α decay chain 109Xe \rightarrow 105Te \rightarrow 101Sn was recorded with time interval of 960 ns between two α pulses. Position localization in the crystal for decays and ions in the energy range from hundreds keV to 60 MeV was achieved with the accuracy of 0.67 mm, proving that this detector is capable of making temporal and spatial correlations for fast decay events. No conclusive evidence was found for the decay chain 108Xe \rightarrow 104Te \rightarrow 100Sn within 3 days experiment. However, two events were observed with properties consistent with the reported observation at Fragment Mass Analyzer (FMA) but with the separation between signals less than 4 ns. The cross section limit of 130 pb was obtained for production of two events of 108Xe, about an order of magnitude below the expectation based on earlier cross section measurements and HIVAP fusionevaporation code.

T_{1/2}(¹⁰⁴Te)<4ns?

Exclusion Plot for Pairing Gaps

BERKELEY LAB