#### LBNL Nuclear Science Division Staff Meeting

#### Jet modifications in a quark-gluon plasma

Weiyao Ke, in collaboration with Xin-Nian Wang



This work is supported in part by NSFC Nos. 11935007, 11221504, and 11890714, by DOE No. DE-AC02-05CH11231, by NSF No. ACI-1550228, and by the UCB-CCNU Collaboration Grant.

Introduction of jet evolution in vacuum and in medium

2 Modeling the evolution of hard partons in a hot QCD medium.

3 A transport equation approach in understanding jet modification



#### Introduction of jet evolution in vacuum and in medium

2 Modeling the evolution of hard partons in a hot QCD medium.

③ A transport equation approach in understanding jet modification



### Creating and probing the properties of the quark-gluon plasma

Quarks & gluons are confined in hadrons in ordinary matter. Heavy-ion collisions deposit huge energy in a finite region, creating quark-gluon plasma (QGP) medium for  $\Delta x, \Delta \tau \sim 10$  fm.





What are medium's properties?

- The created QGP demonstrates hydrodynamic and near-equilibrium behaviors  $\rightarrow$  we can learned a lot long-wave length properties  $\eta/s, \zeta/s, \cdots$
- We still need additional probes to test its microscopic structures.

#### Self-generated probes at short distances in QCD: hard collisions

On high energy colliders, occasionally, a hard QCD collision happens with  $Q \sim p_T \gg \Lambda_{QCD}$ . Asymptotic freedom of QCD: coupling  $\alpha_s = g^2/(4\pi)$  decreases with energy scale.

A perturbatively understanding of the scattering in terms of partons (quarks and gluons).



Aug 11, 2020

4/17

#### Self-generated probes at short distances in QCD: hard collisions

On high energy colliders, occasionally, a hard QCD collision happens with  $Q \sim p_T \gg \Lambda_{QCD}$ . Asymptotic freedom of QCD: coupling  $\alpha_s = g^2/(4\pi)$  decreases with energy scale.



• Highly off-shell parton tends to radiate. Enhanced soft and collinear radiation,

$$rac{dP_{qg}^q}{dxdk_{\perp}^2}, rac{dP_{gg}^g}{dxdk_{\perp}^2} \sim lpha_s C_R rac{1}{x} rac{1}{k_{\perp}^2}$$

- DGLAP-type equations describe the system's evolution towards smaller scale (reducing off-shellness).
- Hard parton evolves into a parton shower.

#### The hard process evolved to large distances

The scale evolution (decreasing Q) eventually drives the system towards the non-perturbative region  $Q \gtrsim \Lambda_{QCD}$ . Parton picture is not validate  $\rightarrow$  hadronization, requires lots of modeling.



• Hadronization + decay. Final states are collimated hadrons and decay products.

#### The hard process evolved to large distances

The scale evolution (decreasing Q) eventually drives the system towards the non-perturbative region  $Q \gtrsim \Lambda_{QCD}$ . Parton picture is not validate  $\rightarrow$  hadronization, requires lots of modeling.



• Hadronization + decay. Final states are collimated hadrons and decay products.

• Jet is defined by grouping<sup>1</sup> the four-momentum of final state particles with in a radius of  $\sqrt{(\eta - \eta^{\text{jet}})^2 + (\phi - \phi^{\text{jet}})^2} < R$  (jet radius).

<sup>&</sup>lt;sup>1</sup>Experimentally, jet has an operational definition to iteratively group final state particles. These algorithms are guaranteed to be insensitive to QCD soft and collinear splittings.

#### The hard process evolved to large distances

The scale evolution (decreasing Q) eventually drives the system towards the non-perturbative region  $Q \gtrsim \Lambda_{QCD}$ . Parton picture is not validate  $\rightarrow$  hadronization, requires lots of modeling.



- Hadronization + decay. Final states are collimated hadrons and decay products.
- Jet is defined by grouping<sup>1</sup> the four-momentum of final state particles with in a radius of  $\sqrt{(n \eta^{\text{jet}})^2 + (\phi \phi^{\text{jet}})^2} < R$  (jet radius).
- An analog, but not precise correspondence, of the hard partonic process.

<sup>&</sup>lt;sup>1</sup>Experimentally, jet has an operational definition to iteratively group final state particles. These algorithms are guaranteed to be insensitive to QCD soft and collinear splittings.

#### Hard QCD process in hot nuclear environment

Jets in relativistic heavy-ion collisions are surrounded by hot & dense medium.

- $\frac{dN_{ch}}{dn} \sim 500$  in central Au-Au  $@\sqrt{s} = 200$  GeV, 2000 in central Pb-Pb  $@\sqrt{s} = 5.02$  TeV<sup>2</sup>.
- Mostly soft particles,  $\langle p_T 
  angle \sim 0.5$  to 0.7 GeV.



<sup>&</sup>lt;sup>2</sup>These are final-state charged hadron multiplicities measured at RHIC and LHC, the medium parton densities are even higher.

#### Hard QCD process in hot nuclear environment

Jets in relativistic heavy-ion collisions are surrounded by hot & dense medium.

- $\frac{dN_{ch}}{dn} \sim 500$  in central Au-Au  $@\sqrt{s} = 200$  GeV, 2000 in central Pb-Pb  $@\sqrt{s} = 5.02$  TeV<sup>2</sup>.
- Mostly soft particles,  $\langle p_T 
  angle \sim 0.5$  to 0.7 GeV.



• Hard partons interact with colorful medium:

<sup>2</sup>These are final-state charged hadron multiplicities measured at RHIC and LHC, the medium parton densities are even higher.

# Hard QCD process in hot nuclear environment

Jets in relativistic heavy-ion collisions are surrounded by hot & dense medium.

- $\frac{dN_{ch}}{d\eta}$  ~ 500 in central Au-Au @ $\sqrt{s}$  = 200 GeV, 2000 in central Pb-Pb @ $\sqrt{s}$  = 5.02 TeV<sup>2</sup>.
- Mostly soft particles,  $\langle p_T \rangle \sim 0.5$  to 0.7 GeV.



- Hard partons interact with colorful medium:
- Hadronization in/out medium, hadronic interactions.

<sup>2</sup>These are final-state charged hadron multiplicities measured at RHIC and LHC, the medium parton densities are even higher.

#### Jet as probes of the medium

Interaction between hard partons & medium modifies the jet compared to the baseline.

• Jet quenching: suppression of production yield of hard process in nuclear collisions<sup>3</sup>.

$${\sf R}_{AA} = rac{d\sigma_{AA 
ightarrow (h,j)+X}}{\langle {\sf N}_{
m Ncoll} 
angle d\sigma_{pp 
ightarrow (h,j)+X}},$$

 $\langle N_{\rm Ncoll} \rangle$ : effective number of nucleon-nucleon collisions in nuclear collisions.

- Di-jet,  $\gamma$ -jet, Z-jet momentum imbalance.
- Modification to the internal structures of jets<sup>4</sup>.

<sup>3</sup>Early proposal from J. D. Bjorken (1982), and M. Gyulassy and M. Plumer, X.N. Wang and M. Gyulassy. <sup>4</sup>For applications in relativistic heavy-ion collisions J. Phys. G 47, no.6, 065102 (2020)

#### Jet quenching: what do we see?



- Inclusive hadron suppression:  $AA \rightarrow h(p_T) + X$ .
- Factor of 5 suppression around  $p_T = 7-10$  GeV at both RHIC and LHC energy.
- Fast rising to unity with increasing  $\ln p_T$  at the LHC.
- What are the mechanism that transfers initial high- $p_T$  partons to lower  $p_T$  regions?

### Jet quenching: what do we see?



- Inclusive jet suppression:  $AA \rightarrow j(p_T) + X$ .
- Much weaker  $p_T$  dependence than inclusive hadron suppression.
- Hundreds GeV jets are suppressed by factor of 2 in central Pb-Pb collisions!
- How are particles / energy-momentum flowing in/out the jet cone due to medium effects.

Introduction of jet evolution in vacuum and in medium

#### 2 Modeling the evolution of hard partons in a hot QCD medium.

③ A transport equation approach in understanding jet modification



# Traveling of a single energetic parton in a hot medium

A formidable task, what is shown is already a much simplified picture.



コト 《母 ト 《 臣 ト 《 臣 ) のへで、

# Traveling of a single energetic parton in a hot medium

A formidable task, what is shown is already a much simplified picture.

Collisional: energy-momentum exchange with medium.

 Medium properties packed into jet transport parameter (leading order):



$$\hat{q} = rac{d\langle \Delta p_{\perp}^2 
angle}{dt} = \underbrace{lpha_s C_R T}_{\text{"(mean-free-path)}^{-1"}} \underbrace{rac{m_D^2 \ln Q^2/m_D^2}{m_{avg.}^2 q_{\perp}^2"}}$$

•  $m_D$ : plasma screening (Debye) mass.  $m_D^2 \sim \alpha_s T^2$ •  $Q^2$ : hard cut-off of momentum transfer.

Time

#### Traveling of a single energetic parton in a hot medium A formidable task, what is shown is already a **much simplified** picture.

Induced radiations triggered by collisional processes<sup>5</sup>.



$$\frac{dP}{dxdk_{\perp}^{2}} = \frac{dP^{\rm vac}(Q)}{dxdk_{\perp}^{2}} + \frac{dP^{\rm med}(\hat{q}(L),\cdots)}{dxdk_{\perp}^{2}}$$

Weiyao Ke

#### Traveling of a single energetic parton in a hot medium

A formidable task, what is shown is already a much simplified picture.

"Recoil": final state of elastic process can become energetic. Interpolate between elastic and radiation.



"Medium excitation": response of medium dynamics to the energy-momentum exchange.



#### Sum multiple interactions

Modified QCD evolution equation<sup>6</sup>: medium effects as perturbation.

• Apply DGLAP-type evolution equation  $\frac{\partial D(z,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s}{2\pi} \int_z^1 \frac{dy}{y} [P_{\text{vac}}(y) + P_{\text{med}}(y)] D(\frac{z}{y},Q^2).$ 

Transport equation approach: medium effect dominates (the method that we took<sup>7</sup>).

• Define interaction rate R = dP/dt,

$$\begin{aligned} (\partial_t + \mathbf{v} \cdot \nabla) f(t, x, p) &= \int_p [R_{\text{coll}}(E + p, p; T) f(E + p) - f(E; T) R_{\text{coll}}(E, p)] \\ &+ [\text{Radiation, corrected for coherence effect}] \end{aligned}$$

medium information ( $T, u^{\mu}$ ) from hydrodynamic simulation.

 Soft partons *E* < 4*T* are redistributed with a hydro-motivated ansatz to guarantee energy-momentum conservation → mimic jet-induced medium excitation.

Weiyao Ke

<sup>&</sup>lt;sup>6</sup>For example, Y.T. Chien, et al PRD 93 074030 (2016) <sup>7</sup>W. Ke, Y. Xu, S. A. Bass, PRC 100 064911 (2019).

Introduction of jet evolution in vacuum and in medium

2 Modeling the evolution of hard partons in a hot QCD medium.

3 A transport equation approach in understanding jet modification



#### Inclusive hadron suppression in a transport model



CMS JHEP04(2017)039

- Inclusive charged particle RAA
  - Data: CMS Pb-Pb @ 5.02 TeV, 0-10%.
  - Bands: transport model with variation of coupling<sup>8</sup>.
- Elastic: frequent, but only changes momentum by O(T) per collisions .
- Induced radiation: rare, but efficient in changing parton's momentum  $p \rightarrow xp, (1-x)p$ .
- Elastic process dominates at low-p<sub>T</sub>.
   Radiation increasing important at high-p<sub>T</sub>.

 ${}^{8}\alpha_{s}(Q^{2}) = \frac{12\pi}{(11N_{c}-2N_{f})\ln(\max\{Q^{2},\mu_{\min}\})}.$  The running  $\alpha_{s}$  is truncated at  $\mu_{\min}$  in a QGP medium with temperature T. Here,  $\mu_{\min}$  is varied from  $1.5\pi T$  to  $2\pi T$ 

Weiyao Ke

LBNL-NSD (online)

# Inclusive jet suppression in a transport model



- Inclusive jet R<sub>AA</sub> with radius R = 0.4 ATLAS Pb+Pb @ 5.02 TeV, 0-10% (PLB 790 108-128) STAR Au+Au @ 200 GeV, 0-10% (arXiv:2006.00582)
- Collisional: efficient in transfer momentum to large-angle<sup>9</sup> outside jet cone R, tan $(\theta) \sim 1/g$ .
- Induced radiation: collinear splittings stay in jet cone, large angle radiations go out of cone.
- Comparable effect of coll. & rad. for R = 0.4.

13/17

<sup>9</sup>In CoM frame of collisions:  $\sqrt{s} \sim ET$ ,  $q_{\perp} \sim m_D$ ,  $q_z \sim q_{\perp}^2/\sqrt{s}$ . Boost it back to the medium frame  $q'_z \sim q_{\perp}^2/T$ ,  $\tan(\theta) = q_{\perp}/q_z \sim T/m_D \sim 1/g$ 

#### Where is the medium excitation?



CMS Pb-Pb @ 5.02 TeV, JHEP05(2018)006

Looking at jet shape, radial r distribution of jet  $p_T$ .

$$\rho(r) = \frac{1}{\sum_{r<1} \Delta p_T} \frac{\Delta p_T}{\Delta r}$$

- Comparing calculations w/ and w/o energy momentum carried by medium excitation.
- Medium excitation only carries a tiny fraction of p<sub>T</sub> produced by the hard process.
- Medium excitation / energy-momentum conservation becomes important at large radial distances.

#### Why are hundreds GeV to TeV jets also suppressed?



- Jet is not a single parton. At the scale resolved by medium, it consists of a spectrum of partons.
- Even TeV jets have large share of energy carried by  $p_T \sim \mathcal{O}(10)$  GeV partons.
- Medium interaction happens at a particular resolution scale  $Q^2_{
  m med} \sim \int \hat{q} dt.$



#### But what have we learned about the medium?

Tuning the coupling strength in the model to fit inclusive hadron and jet suppression pin down the jet transport parameter (on-going work to achieve a systematic Bayesian tuning).

$$\hat{q}_R = \alpha_s C_R T m_D^2 \ln \frac{Q^2}{m_D^2}, Q^2 = 6ET$$



- Coupling is large  $g(T \sim 2T_c) \sim 2$ .
- Jet suppression can be explained by hot medium effect assuming it has a near-thermal color density.

<sup>10</sup>Symbols in figure: earlier extraction from the JET collaboration PRC 90, 014909 (2014).

Weiyao Ke

Introduction of jet evolution in vacuum and in medium

2 Modeling the evolution of hard partons in a hot QCD medium.

③ A transport equation approach in understanding jet modification



- 4 回 ト 4 三 ト 4 三



- Jets, high- $p_T$  hadrons are produced in short distance hard QCD processes.
- Production and evolution of hard processes are pertrubatively understandable.
   → Controlled probes to study medium effects.
- Hot medium effects explains the large suppression of hard process in nuclear collisions
   → the medium contains color charges expected from a thermal QGP.
- In the future, the use of more differential jet measurement to characterize scale dependent QGP properties.

#### Jets in vacuum and definition



Event display from CMS

- Experimentally, one needs to identify jets from a list of "particles" (p<sup>μ</sup>).
- Operational definition with jet finding algorithms.
  - Angular distance  $\Delta r_{ij} = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ .
  - Define new distances  $d_{ij} = \min(k_{T,i}^{2p}, k_{T,j}^{2p}) \frac{\Delta r_{ij}}{R}$ .
  - Iteratively group the four momentum of "nearest" "particles" into jets.
  - "R" is the jet distance parameter (radius).
- Insensitive to a soft or collinear splitting.

• • = • • = •

#### Jets in vacuum and definition



M. Cacciari et al JHEP04(2008)063

- Experimentally, one needs to identify jets from a list of "particles" (p<sup>μ</sup>).
- Operational definition with jet finding algorithms.
  - Angular distance  $\Delta r_{ij} = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ .
  - Define new distances  $d_{ij} = \min(k_{T,i}^{2p}, k_{T,j}^{2p}) \frac{\Delta r_{ij}}{R}$ .
  - Iteratively group the four momentum of "nearest" "particles" into jets.
  - "R" is the jet distance parameter (radius).
- Insensitive to a soft or collinear splitting.

#### Jet definition in heavy-ion collisions

In our model: compute transverse energy towers in each  $\Delta\eta$ - $\Delta\phi$  bin, summing both hard particle and medium excitation contribution:





- Define jets using the grid  $P_{ij}^{\mu}$  with anti- $k_T$  algorithm as implemented in FastJet<sup>1</sup>
- The background is implicitly considered as the "unperturbed" medium.

<sup>1</sup>Cacciari and Salam, PLB 641 (2006) 57.

Weiyao Ke

Aug 11, 2020 17 / 17

# Single parton interacts with medium (in a weakly coupled picture)



Equilibrium distribution  $f(p) \sim e^{-p \cdot u/T}$ Screening mass  $m_D^2 = \left(\frac{N_c}{3} + \frac{N_f}{6}\right) g^2 T^2$ .

- Hard: p ≫ T. Elastic collisions: direct momentum exchange between hard parton and medium constituents.
- Rate: number of collision per unit time,

$$rac{dP}{dtdq_{\perp}^2} \propto T^3 rac{lpha_s^2}{q_{\perp}^2(q_{\perp}^2+m_D^2)}$$

• A more physical quantity than rate is the so-called jet transport parameter  $\hat{q}$ , which measures the momentum broadening per unit time, directly related to medium properties.

$$\hat{q}_R = rac{d\langle (\Delta p_\perp)^2 
angle}{dt} = \int q_\perp^2 rac{dP}{dt dq_\perp^2} dq_\perp^2 = lpha_s C_R T m_D^2 \ln rac{Q_{\max}^2}{m_D^2}$$

# Single parton interacts with medium (in a weakly coupled picture)



#### Medium-induced radiation

- Radiates of another parton due to collision with medium.
- Inelastic: energy is shared among two hard daughter partons.

Single radiation probability for a parton moving in a medium of length  $L^1$ .

$$M_{gg}^{g} = \int_{0}^{L} dt' dk_{\perp}^{2} \underbrace{\langle xp, (1-x)p, k_{\perp}^{2} | e^{i \int_{t'}^{L} \hat{H}_{xp} + \hat{H}_{(1-x)p} dt}}_{\frac{dP}{dx}} \underbrace{\sqrt{P_{gg}^{g}(x)} \frac{k_{\perp} \cdot \epsilon}{k_{\perp}^{2}} e^{i \int_{0}^{t'} H_{p} dt} | p \rangle}_{ensemble avg.}$$

<sup>1</sup>Zakharov JETP 63 952 and 65 615; Caron-Huot, Gale, PRC 82 064902; Arnold, Iqbal, JHEP04(2015)070

# Single parton interacts with medium (in a weakly coupled picture)



#### Medium-induced radiation

- Radiates of another parton due to collision with medium.
- Inelastic: energy is shared among two hard daughter partons.

Single radiation probability breaks into two pieces  $dP = dP_{\rm vac} + dP_{\rm med}$ ,

$$\frac{dP_{\rm med}}{dtdx} = \frac{P_{gg}^g(x)}{2x(1-x)E} \int_0^t dt' dk_{\perp}^2 dq_{\perp}^2 \langle k_{\perp} | iV_3 e^{iH_3t'} | q_{\perp} \rangle, \quad |k_{\perp}\rangle = \frac{\vec{k}_{\perp}}{k_{\perp}^2}$$

Radiation is not localized,  $\Delta t^{-1} \sim$  average formation time in the medium  $\langle au_f^{-1} 
angle$ 

$$H_3 \approx \frac{p_{\perp}^2}{2x(1-x)E} + i\frac{1}{2}\hat{q}_{\rm eff}b^2 + \cdots, \quad \begin{cases} H_3 = \Omega a^{\dagger}a + \cdots \\ \Omega = \sqrt{i2x(1-x)E}\hat{q}_{\rm eff} = \sqrt{i}\langle \tau_f^{-1} \rangle \end{cases}$$

#### Medium evolution

A hydrodynamic based medium simulation<sup>10</sup> provides space-time information of medium temperature (T) and flow velocity (v).

- Event-averaged initial condition + free-stream + (2+1) D viscous hydrodynamics.
- Hard production vertices sampled according binary collision density.
- Below: 0-10% central event for Pb+Pb @ 5.02 TeV.



#### Single radiation rate: simulation compared to theory in special cases

#### Infinite static medium:

simulation from transport equation compared to next-to-leading-log solution of the rate in infinite limit.



#### Finite size effect:

path-length dependence of the radiation rate, simulation compared to numerical solution of the rate in finite medium  $E = 16 \text{ GeV}, \alpha_c = 0.3$ 

1.5 ---- MC Theory 10<sup>2</sup>dR/dw З 1.0 2 0.5  $\omega = 3 \text{ GeV}$  $\omega = 3 \text{ GeV}$ = 0.4Ge\ 0.0 0.3 1.00  $10^2 dR/d\omega$ 0.75 0.2 0.50 0.1 0.25  $\omega = 8 \text{ GeV}$  $\omega = 8$ GeV 0.0 0.00 5 L [fm] L [fm]

Weiyao Ke