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The Nuclear (Weapons) Fuel Cycle

El-Mongy, Sayed. (2006). Recent Verification Techniques of Fissile Nuclear 
Content in Nuclear Fuel. National Center for Nuclear safety and Radiation Control. 
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Transferability is the application of models 
generated at one facility to other settings

Testbed Target
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Indirect Physical Sensing 
with the MERLYN

MERLYN Sensor Suite

● Position (GPS)
● Magnetic field (3-axis)
● Acceleration (3-axis)
● Pressure
● Temperature
● Ambient Light + RGB
● Proximity

Sampling rate: 16 Hz 
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Testbed Facility: High Flux Isotope Reactor at 
Oak Ridge National Laboratory

Merlyn array at the HFIR/REDC testbed at Oak 
Ridge National Laboratory. Overhead image from 
Google Earth.

Fast facts:
§ 85 MW testbed reactor, high 

steady-state neutron flux 
§ 12 MERLYN multisensors
§ Deployed April 2019 
§ ~1 year of labeled data
§ Ground Truth:

§ reactor on/off 
§ 5-class power output
§ secondary loop pump speeds
§ target transfer
§ target irradiation
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Target Facility: TRIGA reactor at the 
McClellan Nuclear Research Center

The same data products are measured at the 
target facility, but signatures may be different in 

different setting.

Fast facts:
§ 2 MW TRIGA reactor, 300 MW pulse 
§ 5 MERLYN multisensors
§ Deployed July 2020 
§ ~2 months of labeled data 
§ Ground truth available:

o Reactor operational history
o Reactor power
o Target production
o Fuel movementMerlyn array at the TRIGA target at the McClellan 

Nuclear Research Center. Overhead image from 
Google Earth. Cherenkov glow in the 

MNRC TRIGA core.
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Similar embedded features

Transductive Transfer Learning Workflow
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Base Supervised ML Model to 
Characterize Reactor Operations 

ARCHITECTURE

80/20 TRAIN/VALIDATE
Learning Rate: 10-3
Training Batch Size: 211

[12]

[10]

[8]

[6]

[4]
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2

HFIR MERLYN 109

Vector

Prevalence 0.62

Accuracy 0.94

MCC 0.866
https://complexity.berkeley.edu/mimosas/

HFIR-109

https://complexity.berkeley.edu/mimosas/
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Base Supervised ML Model to 
Characterize Reactor Operations 

ARCHITECTURE

80/20 TRAIN/VALIDATE
Learning Rate: 10-3
Training Batch Size: 4096

[12]

[10]

[8]

[6]

[4]

9

2

Vector Magnitude

Prevalence 0.62 0.62

Accuracy 0.94 0.75

MCC 0.866 0.456
https://complexity.berkeley.edu/mimosas/

HFIR MERLYN 109
HFIR-109

https://complexity.berkeley.edu/mimosas/
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Baseline Transferability

Testbed 
Data

Target 
Data

Learning

MRNC-ID Accuracy

101 0.28

102 0.64

103 0.32

104 0.51

105 0.54

Prevalence: 0.20

Base 
Model
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Transductive Transfer Learning

Testbed Target

Adapt model

Feed 
target 
data

Selectively 
free layers

Improved 
classification

pseudo-labeled target data

Similar embedded features yield
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What accuracy is needed in the 
pseudo-labeling process?

Courtesy of 2d Lt. M. Brinker, Maj J. Bevins
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Transfer Learning Performance 
Evaluation

§ Remarkable improvement in transfer 
accuracy using transductive cluster-then-
label approach 

§ MCC results suggest room for improvement
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Next Steps with SNITCHES

S. Bai, J.Z. Kolter, V. Koltun, “An Empitical Evaluation of Generic 
Convolutional and Recurrent Networks for Sequence Modeling,” 
ArXiv abs/1803.01271 (2018).

*New Start for FY21* 
Sensor Networks to Identify Transferable 

Classification Heuristics for Enhanced Security

1. *Why* do our ML 
models yield the 
given predictions? 

2. *How* do we develop 
interpretable, 
transferable ML 
models?
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SNITCHES Workflow

Testbed 
Data

Target Data

Feature 
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Target 
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System
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SNITCHES Workflow

Testbed 
Data

Target Data

Feature 
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Target 
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Applications across the 
Nuclear (Weapons) Fuel Cycle

El-Mongy, Sayed. (2006). Recent Verification Techniques of Fissile Nuclear 
Content in Nuclear Fuel. National Center for Nuclear safety and Radiation Control. 
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