Photo/electro-production at an EIC

Samuel Heppelmann

UC Davis | LBL | UC EIC Consortium

m

Diffractive Physics in an EIC

In coherent Vector Meson production an incident photon fluctuates into a quark-anti quark dipole which scatters elastically off a target and emerges as a real Vector Meson

Photoproduction: Nearly real photon $(Q^2 \rightarrow 0)$

Interaction involves elastic scattering (large cross section with increasing energy) Sensitive to parton saturation physics

Electroproduction: Virtual photon $(Q^2 > 0)$,

Probe shorter distances and less sensitive to saturation effects

By measuring the outgoing electron, we can fully determine the kinematics

To access lower Bjorken-x regions, in general, we look to forward regions (higher η) of our acceptance.

Elastic VM electroproduction $\sigma(eX \rightarrow eVX)$

The Bjorken-x depends on the photon energy where $x = (M_v c^2)^2 / W^2$, W^2 is the photon-nucleon center of mass

Introduction

EIC White Paper, arXiv:1212.1701

Coherent photoproduction

- Sensitive to average gluon distributions
- Access to the transverse distribution for interactions
 (similar to Generalized Parton Distributions for nuclei)

Incoherent production (Nuclear Breakup)

- sensitive to event-by-event fluctuations, including gluonic hotspots (fluctuations of nucleon position and substructure)
- Experimentally, events are characterized by the empty detector (rapidity gap)

Overview of eSTARlight

Coherent photonuclear cross-sections are parameterizations of $\sigma(\gamma p)$ from HERA/fixed target data or theory

Convolution of photon flux from electron with $\sigma(\gamma p \text{->Vp})$

 $^\circ~$ Both depend on Q^2

Nuclear targets included with a Glauber calculation

Vector mesons retain the photon spin

- $\,\circ\,$ For Q² ~ 0, transversely polarized
- As Q² rises, longitudinal polarization enters
- Spin-matrix elements quantified with HERA data

Introduction

Systems studied:

Collider configurations:

Electron (18 GeV) on Au (100 GeV) for and Electron (18 GeV) on protons(250 GeV) Electron (18 GeV) on protons(100 GeV) Vector Mesons:

$$J/\psi \rightarrow e^+e^-$$

$$\Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \rightarrow e^+e^-$$

$$\rho \rightarrow \pi^+\pi^-$$

$$\omega \rightarrow \pi^+\pi^-$$

$$\varphi \rightarrow K^+K^-$$

Rapidity Beam Convention

$$p/Au \longrightarrow e^-$$

LBNL All-Silicon Detector

(Developed by LBNL's eRD16 generic EIC detector project) •Silicon Tracker 6 layers •Silicon Endcap Disks 5 disks

 $J/\psi \rightarrow e^+e^-$

Electron (18 GeV) on Au (100 GeV) Electron (18 GeV) on protons(100 GeV)

As we push to higher Q^2 , easier to measure the scattered electron

Similar Rapidity distribution for higher Q²

Events generated with eSTARlight

Narrow range of rapidity (Bjorken-x) for coherent vector meson production

Larger m_V corresponds to tighter rapidity range

8

Events generated with eSTARlight

Detector Acceptance requirements

Electron pair's pseudorapidity important for detector acceptance

Events generated with eSTARlight

Larger m_V corresponds to tighter rapidity range

10

ρ production

2

0

0

10/21/2020

2

6

daughter π+/- η

4

The ρ production at mid-rapidity, is primarily low momentum $\pi^{+/-}$

To reconstruct ρ requires forward reconstruction

(ep and eA, 18 GeV, 100 GeV)

4

6

daughter π+/- η

8

ω production

The $\boldsymbol{\omega}$ production at mid-rapidity has similar acceptance to the ρ

2

0

4 6 8 daughter π^{+/-} η

8

0

2

4

6

daughter π^{+/-} η

eSTARlight with EICROOT

Full Detector Simulation & Reconstruction

BeAST Detector (Brookhaven eA Solenoidal Tracker) •Silicon Tracker

4 layers with $0.3\% X_0$ each

•TPC

2 m long, Gas: Argon:Freon:Isobutane(95:3:2) •Silicon Endcap Disks

6 disks (each side)

LBNL All-Silicon Detector

(Developed by LBNL's eRD16 generic EIC detector project)

•Silicon Tracker

6 layers

•Silicon Endcap Disks

5 disks (each side)

13

Detector Comparison in EICROOT

eSTARlight & All-Silicon Detector

Separating upsilon peaks should be a detector requirement

The All-Silicon detector provides enough energy resolution to distinguish the three upsilon states with either a 1.5 or 3 Tesla field

$\phi \rightarrow K^{+} K^{-}$ in eSTARlight

18 GeV Electron 100 GeV Proton

Forward/backward decay of the Kaons

*φ***→***K***^+** *K***^− in eSTARlight** Scattered Electron

Samuel Heppelmann | UC Davis | LBL | UC EIC Consortium

$\phi \rightarrow K^{+} K^{-}$ in eSTARlight and ElCRoot

 $(Q^2 < 1 \ GeV^2)$

18 GeV Electron 100 GeV Au

Two peak structure causes drop in acceptance at η =0

Structure arises from linear photon polarization and Clebsch-Gordon coefficients

Scanning beam energies will shift rapidity acceptance, allowing full probe of low $\,Q^2\,$

eStarlight now supports HEPMC3 and is integrated into the EIC software hub. https://github.com/eic/estarlight

HEPMC3 integration allows compatibility with EIC-Smear and Fun4All

Future projects:

- Comparisons of Fun4All and EICROOT performance
- Include backward production of vector meson production

Summary

eSTARlight simulations for photoproduction & electroproduction

Systems studied:

Collider configurations:

Electron (18 GeV) on Au (100 GeV) for and Electron (18 GeV) on protons(100 GeV)

Vector Mesons:

 $\phi \rightarrow K^{+} K^{-}$ $J/\psi \rightarrow e^{+}e^{-}$ $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \rightarrow e^{+}e^{-}$ Acceptance /Bjorken-x distributions of the J/ ψ and $\Upsilon(1S)$.

Studies with eStarlight in EICROOT (BeAST & LBNL All-Silicon Detectors)

- Reconstruction efficiency
- Detector resolution for different field strengths and acceptance cuts

OutLook

- eStarlight recently integrated with the EIC software framework and HEPMC3
- Future studies with eic-smear and Fun4All
- Forward/Backward production of baryons

20