

Heat Diffusion Modeling and Data of high-C_p Superconducting Components

November 11, 2020

E. Barzi, F. Berritta, I. Novitsky, D. Turrioni, A. V. Zlobin, X. Peng, M. Tomsic

US Magnet Development Program

Outline

Part I (9 slides). Finite Element Modeling of Heat Diffusion in Standard and High- C_p wires, where some superconducting subelements are replaced with Cu/Gd_2O_3 powders in Cu tubes. Model validation with Minimum Quench Energy (MQE) data on standard and high- C_p Hypertech wires.

PUBLISHED AS INVITED PAPER ON INSTRUMENTS SPECIAL ISSUE "Applied Superconductivity for Particle Accelerators": Barzi, E.; Berritta, F.; Turrioni, D.; Zlobin, A.V. "Heat Diffusion in High- C_p Nb₃Sn Composite Superconducting Wires." Instruments 2020, 4, 28.

Part II (5 slides). An alternate approach is to introduce high- C_p materials in the Rutherford cable itself, i.e. Hypertech high- C_p ribbon or tape. Samples of this tape of 10 mm width and two different thicknesses 89 μ m and 64 μ m were used to measure and compare the MQE of Nb₃Sn wires, both bare and outfitted with high- C_p tape.

TO BE PUBLISHED: "Test of Superconducting Wires and Rutherford Cables with High Specific Heat," E. Barzi, I. Novitsky, A. Rusy, D. Turrioni, A. V. Zlobin, X. Peng, M. Tomsic.

Heat Capacity of Gd₂O₃

Specific heat of monoclinic Gd_2O_3 R. Hill et al 1983 J. Phys. C: Solid State Phys. 16 2871

X. Xu, A. V. Zlobin, E. Barzi – Fermilab; C. Buehler, M. Field, B. Sailer, M. Wanior, H. Miao – Bruker EST; C. Tarantini – Florida State University.

"Enhancing specific heat of ${\rm Nb_3Sn}$ conductors to improve stability and reduce training. "

Presented at CEC-ICMC 2019

Industry Produced High-C_p Nb₃Sn Wires

Tin in Tube wire

Internally and on Corners

Hypertech

X. Xu, P. Li, A. Zlobin and X. Peng, *IEEE Trans. Appl. Supercond.*, vol. 23, Art. no. 4001605, 2018.

Externally

Bruker-OST, 2019

Minimum Quench Energy Measurements

Pei Li, Xinchen Xu, and A. V. Zlobin, "Development and Study of Nb₃Sn Wires With High Specific Heat." IEEE, VOL. 29, NO. 5, 2019

0.2

0.3

0.5

Normalized transport current, I/I_c

0.4

0.6

0.7

0.8

ANSYS Thermal APDL Model

"Measurements and modelling of mechanical properties of Nb₃Sn strands, cables and coils", E. Barzi, et al., IEEE Trans. Appl. Supercond., vol. 29, no. 5, Art. no. 8401808, 2019.

Thermal Model Hypotheses

The initial temperature is 4.2 K and it is set as boundary temperature constraints:

- T(r,0) = 4.2 K
- T(**r**,t) = 4.2 K @boundary

Magnetic Field B=12T

An heat flux pulse of 200 µs is applied on the upper half arc (2D model) with unitary thickness in z.

Temperature/Field Dependent Material Properties

By obtaining $I_c(12 \text{ T}, 4.2 \text{ K})$ using parameterization and solving for T_c in $I_c(12 \text{ T}, T_c)$:

Current ratio I/I _c @B=12 T	T _c
0.2	6.3 K
0.4	5.3 K
0.6	4.8 K
0.8	4.4 K

Sensitivity of modelled *MQE* was calculated for thermal conductivity and heat capacity variations of Nb₃Sn, Cu, Gd₂O₃, stycast and bronze, as well as for heater angle amplitude.

Materials Properties Table

	Nb_3Sn $d = 8400 \text{ kg}$ m^{-3}		d = 8400 kg		d = 8	Cu 960 kg n ⁻³	Cu-Sn (Sn wt%=5.46) $d = 8850$ kg m ⁻³		Stycast $d = 2400 \text{ kg}$ m ⁻³		Gd2O3 $d = 7410 kg$ $m-3$	
T	κ	C_p	К	C_p	К	C_p	κ	C_p	К	C_p		
4 K	174	0.41	158	0.091	1.9	0.129	0.07	0.44	6.2	22		
6 K	237	0.94	237	0.226	2.9	0.194	0.11	1.70	6.2	27		
8 K	308	1.85	315	0.470	3.9	0.387	0.15	3.70	6.2	29		
10K	320	3.27	394	0.856	4.9	0.968	0.19	6.20	6.2	29		
T Thermal Diffusivity a [cm²/s]												
4 K	$0.505 \cdot 10^3$		1.94	40.10^3	16.6		0.663		0.380			
6 K	$0.300 \cdot 10^3$		1.17	70.10^{3}	16.9		0.270		0.310			
8 K	$0.198 \cdot 10^3$		0.74	48.10^{3}	11.4		0.169		0.289			
10 K	$0.116 \cdot 10^3$		0.5	13.10^{3}	5.7		0.128		0.289			

Model versus Experiment

MQE from model is systematically lower than MQE from data since in the experiment 100% of the heat from the strain gauge used as heater is assumed to go into the sample.

Is there an optimal thermal location for high- C_p elements?

J_e Loss in High- C_p Wire vs. High- C_p Cable

Hypertech Sn-in-Tube Nb₃Sn wire with 48 regular Nb-Sn subelements and 13 high- C_p ones made of Cu/ Gd_2O_3

-20% in J_e

Bare Cable $C_p \sim 1.5 \text{ kJ/(m}^3\text{K)}$

Strand

-10% in J_e

-Cu/Gd₂O₃ tape

 C_p of Cable wrapped with High- C_p tape ~ 10 -15 kJ/(m³K)

Epoxy

MQE Measurement Procedure for Wires

Strain gauge Nb3Sn Wire

Stycast

Strain gauge

Nb₃Sn wire

EXPERIMENTAL SETUP

REPRODUCIBILITY AND MEASUREMENT ERRORS

WK-09-125BT-350 Micro-Measurements strain gauge (4 mm x 1.5 m) as heater

Geometrical Configurations of Nb_3Sn wire and $High-C_p$ Tape

OPTION A – Tape wrapped around wire before heat treatment

OPTION B – Tape placed underneath wire, and either soldered or not after heat treatment.

Nb₃Sn Wire Normalized *MQE*Results

Summary

A major focus of Nb₃Sn accelerator magnets is on significantly reducing or eliminating training. Increasing the conductor specific heat will lead to shorter training with substantial savings in machines commissioning costs.

- PART I: The FEM thermal model accurately reproduces relative behavior in Minimum Quench Energy (MQE) between standard and high- C_p wires.
 - The model was also very useful in contrasting the intuitive thought that for maximum thermal efficiency the Gd_2O_3 tubes have to be external to the superconducting elements.
 - This is good news since on the contrary there are indications that placing the Gd₂O₃ tubes externally is an obstacle to drawing.
- PART II: Samples of an Hypertech high- C_p Cu/Gd $_2$ O $_3$ tape 10 mm wide and two different thicknesses 89 μ m and 64 μ m were used to measure and compare the MQE of bare Nb $_3$ Sn wires and wires outfitted with this tape.

NEXT

Measure and compare at various magnetic fields the MQE of standard NbTi and Nb₃Sn Rutherford cables and cables outfitted with high- C_p tape, and look for relative correlations between wire and cable tests.

NEXT – NbTi and Nb₃Sn CABLE *MQE* TESTS

