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PROGRAM Outline

Part | (9 slides). Finite Element Modeling of Heat Diffusion in Standard and
High-Cp wires, where some superconducting subelements are replaced with
Cu/Gd,05; powders in Cu tubes. Model validation with Minimum Quench
Energy (MQE) data on standard and high-C, Hypertech wires.

PUBLISHED AS INVITED PAPER ON INSTRUMENTS SPECIAL ISSUE “Applied
Superconductivity for Particle Accelerators”: Barzi, E.; Berritta, F.; Turrioni, D.; Zlobin,
A.V. “Heat Diffusion in High-C, Nb;Sn Composite Superconducting Wires.” Instruments
2020, 4, 28.

Part Il (5 slides). An alternate approach is to introduce high-C, materials in
the Rutherford cable itself, i.e. Hypertech high-C, ribbon or tape. Samples of
this tape of 10 mm width and two different thicknesses 89 um and 64 um
were used to measure and compare the MQE of Nb,;Sn wires, both bare and
outfitted with high-C tape.

TO BE PUBLISHED: “Test of Superconducting Wires and Rutherford Cables with High
Specific Heat,” E. Barzi, I. Novitsky, A. Rusy, D. Turrioni, A. V. Zlobin, X. Peng, M.
Tomsic.
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proceam | Industry Produced High-C, Nb;Sn Wires

Internally and on
Corners

Tin in Tube wire

Hypertech

X. Xu, P. Li, A. Zlobin and X. Peng,
IEEE Trans. Appl. Supercond., vol.
23, Art. no. 4001605, 2018.

Gd,05/ Cu tubes 5o &

Externally

Restacked Rod Process wire Bruker-OST, 2019
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PROGRAM Minimum Quench Energy Measurements
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Stycast

Schematics of the original setup to

measure MOE.

Pei Li, Xinchen Xu, and A. V. Zlobin, “Development and
Study of Nb;Sn Wires With High Specific Heat.” IEEE, VOL.
29, NO. 5, 2019
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PROGRAM

Stycast Cu Nb,Sn Bronze Gd,0;+Cu

0.7 mm

38 1866m j
N B2 bt

1

X138 1881mm

“Measurements and modelling of mechanical properties of Nb;Sn strands, cables and coils”,
E. Barzi, et al., IEEE Trans. Appl. Supercond., vol. 29, no. 5, Art. no. 8401808, 2019.
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Thermal Model Hypotheses

The initial temperature

Is4.2Kanditis setas

boundary temperature

constraints:

= T(r,0)=4.2K

= T(rit)=4.2K
@boundary

Magnetic Field B=12T

MOR Office of

An heat flux pulse of 200 us
Is applied on the upper half

arc (2D model) with unitary

thickness in z.
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orocr T Temperature/Field Dependent Material Properties

Copper@B=12T
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DROGRAM Materials Properties Table

NbsSn Cu Stycast Gd:0s
d=8400kg d=89%60kg  CWom (Snwt=546)d=8850 2}:100 kg  d=7410kg
m-3 m-3 kg m™ m-3 m-3
T K Cp K Cp K Cp K Cp K Cp
4K 174 041 158  0.091 1.9 0.129 0.07 0.44 6.2 22
6K 237 0% 237 0.226 29 0.194 0.11 1.70 6.2 27
8K 308 1.85 315 0470 3.9 0.387 0.15 3.70 6.2 29
10K 320 3.27 394  0.856 4.9 0.968 0.19 6.20 6.2 29
T Thermal Diffusivity a [cm?/s]
4K 0.505-10° 1.940-10° 16.6 0.663 0.380
6 K 0.300-10° 1.170-103 16.9 0.270 0.310
8K 0.198-10° 0.748-103 11.4 0.169 0.289
10K 0.116-10° 0.513-10° 5.7 0.128 0.289
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PROGRAM Model versus Experiment
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the experiment 100% of the heat
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Is there an optimal thermal
location for high-C, elements?
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rrociam g LOss in High-C, Wire vs. High-C, Cable
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PROGRAM MQE Measurement Procedure for Wires

~ Strain gauge Nb3Sn Wire | REPRODUCIBILITY AND
> 1 MEASUREMENT ERRORS
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WK-09-125BT-350 Micro-
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wire and High-C, Tape

OPTION A — Tape wrapped around wire before heat treatment

OPTION B — Tape ‘
placed underneath g H{F 1
wire, and either mo
soldered or not
after heat
treatment.




Minimum quench energy, MQE pJ

U.S. MAGNET

DE PMENT

,}![ (| i \ | ‘-_‘\\ \\\\\\\}* ' ® Round Bare
m n ‘ ‘M\& ‘\"‘ . “ m Rolled Bare /
3,000
: MR @ Round Wrapped thin
- O Rolled bottom Soldered thin
2,500 T H Rolled bottom Soldered Thick
A Rolled bottom unsoldered thin, HT2
°
I X L | A Rolled bottom unsoldered thin, HT1
2,000 +
i X Hypertech High-Cp
1,500 a
! s
X
1,000 +
L . O °
° @
A
I A
500 + | O
- . ‘ .
A
1 e
L A x
0 ——— e .
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized transport current, 1/1.(15T)

5. DEFARTMENT OF Ofﬁce Of

NERGY Science
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PROGRAM Results

4 ® Wrapped thin [13]
O Soldered bottom thin
O Soldered bottom thick
O
o o A Unsoldered bottom thin, HT2
= 3 (|
e o U o % | A Unsoldered bottom thin, HT1
3] °
UI X Hypertech High-Cp [12,17]
S . X
g, .
Q
(@) O
<
oo
II
~ER N
S A A
A A A
0 +———— 4
0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Normalized transport current I/l (15 T)

U.5. DERPARTMENT OF Office of

ENERGY Science




U.S. MAGNET
DEVELOPMENT

PROGRAM Summary

A major focus of Nb;Sn accelerator magnets is on significantly reducing or eliminating
training. Increasing the conductor specific heat will lead to shorter training with
substantial savings in machines commissioning costs.

PART I: -The FEM thermal model accurately reproduces relative behavior in
Minimum Quench Energy (MQE) between standard and high-C, wires.
- The model was also very useful in contrasting the intuitive thought that for

maximum thermal efficiency the Gd,0O, tubes have to be external to the
superconducting elements.

- This is good news since on the contrary there are indications that placing
the Gd,0, tubes externally is an obstacle to drawing.

PART IIl: - Samples of an Hypertech high-C, Cu/Gd,0,; tape 10 mm wide and two
different thicknesses 89 um and 64 um were used to measure and compare
the MQE of bare Nb;Sn wires and wires outfitted with this tape.

NEXT

Measure and compare at various magnetic fields the MQE of standard NbTi and Nb;Sn
Rutherford cables and cables outfitted with high-C, tape, and look for relative
correlations between wire and cable tests.
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srosian - NEXT - NbTi and Nb,Sn CABLE MQE TESTS
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