EMPIRE-3.2

Nuclear reaction code system

M. Herman

WANDA, Jan. 25 - Feb 3, 2021

EMPIRE scope

- Incident energies up to ~150 MeV
- Projectiles: n, p, d, t, 3He, 4He, γ, and Heavy Ions (HI)
- Outgoing channels: projectiles (except HI), multiparticle emission, discrete levels (including isomers), γ lines, fission
- Reaction mechanisms: direct, pre-equilibrium and statistical model
- Provides: reaction cross sections, residue production cross sections, angular distributions, spectra (incl. PFNS), angle-energy distributions of reaction products
- Targets A > 20 (light nuclei excluded)
- Low energy range for neutron reactions covered by interface to Atlas of Neutron Resonances (to be updated)

Honorary Developer:

Prof. Dr. hab. Hans A. Weidenmueller

Developers:

M. Herman (BNL, Upton)

R. Capote (IAEA, Vienna)

M. Sin (University of Bucharest)

A. Trkov (IAEA, Vienna)

B.V. Carlson (ITA, Sao Jose dos Campos)

D. Brown (BNL, Upton)

G. Nobre (BNL, Upton)

P. Oblozinsky (Bratislava)

C. Mattoon (LLNL, Livermore)

Young-Sik Cho (KAERI, Daejeon)

V. Plujko (University of Kiev)

V. Zerkin (IAEA, Vienna)

M. Pigni (ORNL, Oak Ridge)

S. Hoblit

H. Wienke

Contributors:

T. Kawano (KALMAN)

H. Lenske (ORION/TRISTAN)

H. Wolter (ORION/TRISTAN)

M.B. Chadwick (HMS)

E.Sh. Soukhovitskii (OPTMAN)

C.H. Dasso (CCFUS)

A. Sierk (BARFIT/MOMFIT)

S. Mughabghab (Atlas)

A. Ventura (some aspects of fission))

EMPIRE's convenience

- Operation via Graphic User Interface (GUI)
- Easy input (extensive use of defaults, built-in internal logic)
- Choice of reaction models (Fus. 7, Dir. 2, PE 3, LD 3, G-str. 6, Fiss. 5)
- Manipulation and verification of ENDF-6 files
- Interactive plots of experimental and calculated results
- Automated calculation of sensitivity matrices for Kalman fitting and covariances

EMPIRE-3.2 (Malta)

Nuclear Reaction Model Code

Reaction models

Fusion

- Spherical optical model (ECIS-2006),
- Coupled-channels (ECIS-2006, OPTMAN)
- Distorted Wave Born Approximation DWBA
- Simplified coupled-channels for HI (CCFUS)
- distributed barrier model for HI
- deuteron absorption
- photo-absorption for incident gammas
- 'read in'

Direct inelastic

- Coupled-channels (ECIS-2006, OPTMAN)
- Distorted Wave Born Approximation DWBA (ECIS-2006)
 can be used in addition to CC & for levels in the continuum

Reaction models (cont.)

Pre-equilibrium

- TUL Multistep Direct (ORION + TRISTAN)
- NVWY Multistep Compound with γ-emission
- Exciton model (PCROSS)
- Iwamoto-Harada model for complex particle emission (PCROSS)
- Hybrid Monte Carlo Simulation (DDHMS) with multiple PE emission

Compound nucleus

- HRTW or Moldauer for widths' fluctuation
- Multi-emission Hauser-Feshbach model with full γ-cascade
- Engelbrecht-Weidenmueller transformation for direct-compound interference

Level densities

- EMPIRE Superfluid Model with dynamical deformation effects
- Gilbert-Cameron
- HFB microscopic tables (RIPL-3)
- γ-strength functions

Reaction models (cont.)

Fission

- Symmetric, single barrier fission for HI
- More advanced fission for incident n, p and γ
 - multi-hump barriers
 - microscopic barriers
 - optical model for fission
 - · multimodal fission
- Prompt fission neutron spectra (PFNS)
 - Los Alamos model
 - Kornilov model

Needed to improve predictive power

- Level densities
 - Collective lev. den. enhancements' dumping at higher energies
 - D_o out of stability line
 - Spin distributions
- Multiple preequilibrium > ~30 MeV
- Reliable theoretical models for going out of the stability line or...
- Experimental data to calibrate phenomenological input parameters

 $1.3^5 = 3.7 = 370\%$ 5 emissions assuming 30%, fully correlated error for strong channels $2.0^5 = 32 = 3200\%$ 5 emissions assuming 100%, fully correlated error for weak channels