Recent and Future Improvements to MCNP6 for Isotope Production Applications

Michael E. Rising

Monte Carlo Codes, XCP-3 Los Alamos National Laboratory

WANDA 2021

Predictive Codes for Isotope Production

27 January 2021

Outline

- Overview of MCNP6®
- Isotope Production
- MCNP6 Modernization
- Future Improvements

• MCNP6® is the LANL general purpose, continuous-energy Monte Carlo radiation transport code

MCNP 6.1.0 released by RSICC in July 2013
 MCNP6.1 = MCNP5-1.60 + MCNPX-2.70
 MCNP 6.2.0 released by RSICC in April 2018
 MCNP5 & MCNPX are frozen – no future releases

RSICC distributions: 1,278 in FY19, 1,185 in FY20

Focus of current developments within the MCNP code are driven primarily by three main <u>long-term</u> (decades) programs:

LANL Institutional Support

Code Modernization, Maintenance, and User Support

NNSA Advanced Scientific Computing (ASC) program

Unstructured Mesh, Neutron/Photon Physics, Advanced Variance Reduction, and High Performance Computing

DOE Nuclear Criticality Safety Program (NCSP)

Criticality, Shielding/Dose, Parameter Studies, Verification and Validation, Upper Subcritical Limits

Many <u>short term</u> (years) projects drive new capability development Recent examples include:

- LANL LDRD (microreactor capabilities and unstructured mesh)
- NA-22 (fission model FREYA & CGMF integration, parallel PTRAC)

Case Study in Nuclear Criticality: What Makes a Code Predictive?

Ongoing method development

- Quick updates to methods when **nuclear data changes:** recent example with ENDF/B-VIII.0 $S(\alpha,\beta)$
- Ongoing research in critical and subcritical systems

Code verification

- Assume data is perfect, how does the code perform?
- Routine use of analytic criticality (k_{eff}) problems to test algorithms/methods is necessary

Code and nuclear data validation

- Compare the predictions (code+data) to reality
- Routine use of a variety of criticality benchmark
 simulations in comparison to experiment is essential
 - Criticality (k_{eff}), reactor kinetics (β_{eff}, Rossi-α), subcritical multiplication (singles, doubles, leakage multiplication)

Jezebel Critical Experiment

Hutchinson, et al., subcritical studies

Multiplicity Detectors

MCNP6 is used in a broad set of accelerator applications

- Spallation source calculation
- Transmutation of radioactive materials
- Shielding design (not discussed here)

Other accelerator-specific features

- Magnetic fields
- Source options, i.e., beam shape

For **spallation source** simulation or similar, need charged particle transport and data and/or models for collision physics

For **transmutation** of radioactive materials, need both reaction rate information from transport simulation and production/depletion capability and decay sub-library data/physics

MCNP Model courtesy of Ellen O'Brien

MCNP6 includes some proton cross section data tables

- LA150h library 41 isotopes extension .24h
 - ¹H, ²H, ¹²C, ¹⁴N, ¹⁶O, ²⁷AI, ²ðSi, ²ðSi, ³ðSi, ³¹P, ⁴⁰Ca, ⁵⁰Cr, ⁵²Cr, ⁵³Cr, ⁵⁴Cr, ⁵⁴Fe, ⁵⁶Fe, ⁵⁶Fe, ⁵ðFe, ⁵ðNi, ⁶⁰Ni, ⁶¹Ni, ⁶²Ni, ⁶⁴Ni, ⁶³Cu, ⁶⁵Cu, ⁶³Nb, ¹ð²W, ¹ð³W, ¹ððW, ¹ððHg, ¹ððHg, ¹ððHg, ²ððHg, ²ððHg, ²ððHg, ²ððHg, ²ððHg, ²ððHg, ²ððPb, ²ððPb, ²ððBi
- ENDF70PROT 47 isotopes extension .70h
 - 1H, 2H, 3H, 3He, 6Li, 7Li, 9Be, 10B, 12C, 14N, 16O, 27AI, 28Si, 29Si, 30Si, 31P, 40Ca, 50Cr, 52Cr, 53Cr, 54Cr, 54Fe, 56Fe, 57Fe, 58Fe, 58Ni, 60Ni, 61Ni, 62Ni, 64Ni, 63Cu, 65Cu, 93Nb, 182W, 183W, 184W, 186W, 196Hg, 198Hg, 199Hg, 200Hg, 201Hg, 202Hg, 204Hg, 206Pb, 207Pb, 208Pb, 209Bi
- CP2011 7 isotopes extension .71h
 - -1H, 2H, 3H, 3He, 4He, 6Li, 7Li

If no tabular data is available then MCNP6 will use model physics

Upper energy limits may vary (150 MeV is typical)
Production cross sections and emission spectra also vary

- "Newer" electron physics options
 - Single Event Electron physics
 - EPRDATA
 - Improved atomic relaxation ———
 - Likely too computationally expensive and unnecessary for isotope production
- Heavy ion and other "spallation" physics options
 - Specify heavy ions as source particle (SDEF par=ZA)
 - Model Physics ————
- Routine validation of the model physics options is extremely sparse

Variable	Bertini	ISABEL	CEM (default)	INCL	LAQGSM
Lower Energy	20-150 MeV	20-150 MeV	~ 10 MeV	~ 100 MeV (not in MCNP: ~ 5 MeV/A)	~ 100 MeV/A (not in MCNP: ~a few MeV/A)
Upper Energy	3.5 GeV (nuc-nuc) 2.5 GeV (pion-nuc)	1 GeV	5 GeV	2 GeV (not in MCNP: ~ 15 GeV)	~ 1 TeV/A (not in MCNP: ~ 20-100 TeV)
Target Nuclei	All	All	A ≥ 4	All	All
Incident particles	h, n, pions	h, n, A ≤ 4, (not in MCNP: also A>4)	h, n, pions, γ	h, n, A ≤ 4 (not in MCNP: ~ A<16)	Almost all particles & ions

MCNP6 includes an embedded version of CINDER'90

Integrated into the reactor physics burn-up/depletion feature

- BURN card
- k-eigenvalue calculation only

Material activation and transport of delayed-particles

- ACT card
- fixed-source calculation

Spontaneous source options

- Particle-type options on SDEF card
- fixed-source calculation

Code coupling efforts:

- MCNP + CINDER
- MONTEBURNS
- MCNP + ORIGEN
- MCNP + FISPACT
- and more

In practice, isotope production calculations are not done with inline transport + production/depletion physics – coupled simulations are used, i.e. 1) MCNP6, then 2) CINDER'90

MCNP6 Modernization

MCNP6 Modernization

Modernization via modularization

Modular components

- Improved testing → provable correctness of the code
- Easier maintainability
- Cleaner code
- Component reuse
- New features more efficiently developed and integrated
- Early career staff excited to work on a more modern code

MCNP6 Modernization

Recent and ongoing efforts relevant to isotope production applications

Event Record

- New PTRAC replacement is done
 - –HDF5-formatted output
 - Parallel threading and MPI

Collision Physics

- Just beginning a nuclear data interface project
 - -Handle sampling/access to tabulated nuclear data
 - Provide consistent interface to model physics

Production / Depletion

- Some planning, but this has been a low priority so far
 - Disentangle MCNP/CINDER dependencies (modularize)
 - -Develop interface so alternatives can be used inline

Future Improvements

Future Improvements

Thoughts on potential future efforts relevant to isotope production applications

Event Record

- HISTP/HTAPE
 - -Patch MCNP6.2 to fix this broken capability (short term)
 - Deprecate in favor of PTRAC-based capability (long term)

Collision Physics

- Proton data and model physics
 - New interface will help with verification of data/model
 - Updates to proton data/models

Production / Depletion

- First steps to make CINDER a callable library
 - -Flexibility to use inline in MCNP6 and in coupled calculation
 - The future of CINDER is not clearly defined

Future Improvements

How to make isotope production applications more predictive...

Ongoing method developments

- Code improvements relevant to charged-particle transport
- Data and model physics updates as necessary

Method verification (comparisons to analytic results)

- Charged-particle / condensed history algorithm verification
- Production / depletion method verification

Validation, validation!

 Need benchmark experiments and models that integrate collision physics data and models, residual nuclide calculations, and production/depletion physics

Questions?

Michael E. Rising, mrising@lanl.gov

