

Nuclear Data Needs for LISE++

Contents

Introduction

- LISE⁺⁺ Package
- Fragment-separator construction
- Reaction Mechanisms
- Application

Databases in LISE⁺⁺

- o Masses
- o **Isomers**
- o lonization energy
- Experimental cross sections
- Fission barriers
- o Branch ratios
- o

Needs in detailed information

- Excitation energy of (fissile) nuclei after abrasion
- o Limiting temperature

□ The LISE⁺⁺ program is designed

- to predict intensities and purities of rare isotope beams for the planning of future experiments with in-flight separators,
- is also essential for tuning of rare isotope beams where results can be quickly compared to on-line data.
- □ The LISE⁺⁺ program is widely used

LISE⁺⁺ package

- The LISE⁺⁺ package (including codes PACE4, Global, Charge, MOTER, ETACHA4, GEMINI++, Spectroscopic Calculator) operating on Windows, macOS, Linux environment
- The LISE⁺⁺ package is maintained by LISE⁺⁺ group @ Michigan State University and is freely available and distributable through the LISE⁺⁺ website: http://lise.nscl.msu.edu>

- Spectrometer design with <u>different sections called "blocks"</u>
 - (magnetic and electric multipoles, solenoid, velocity filter, RF deflector and buncher, material in beam, drift, and others)
- a <u>user-friendly interface</u> that helps to construct a fragment separator from the different blocks.

- Analytical and Monte Carlo
 calculation of fragment transmission
- Ion optical calculation up to 2nd order (5th order use in MC mode)
- Minimization of Ion optic properties

Reaction Mechanisms

Application Examples

 \bigcirc

 $(\mathbf{\dot{\odot}})$

 (\mathbf{i})

 \bigcirc

 $\overline{\mathbf{S}}$

 $(\dot{\ })$

(

Atomic Masses

- Ionic Masses
- Isomeric states database
- Fission barrier database
- Experimental production cross sections
- Decay branching ratio database
- Compound material database
- Discovery database

Databases	Help	
AME &	properties: View, Edit	
AME &	properties: Plots	•
Isomer	database	
Ionizati	on energy database	
Decay	Branching Ratio databas	е

- Intrinsic datasets (ranges, model parameterization, and so on)
- Set of separator configurations /LISE/
- NSCL & FRIB secondary beam rates /LISE/

Atomic Masses

- lon mass for **optics settings**, isotope selection ٠
- Production rates with built-in reaction models (separation energies for de-excitation cascade • calculations in abrasion-ablation, fusion-residues, all fission reactions)
- Half-life calculation, decay analysis .
- Plotting isotope properties (energy separation, binding energies, $T_{1/2}$) .

Production Mechanism			>	≺ 🔤 Databases				
Reactions / Energy Loss, Stragg	ing Charge states	`	V/u) + Be \rightarrow ⁴² S	DataBase 0	- AME2016 (d	atabase)	•	Index=16026
– Masses –				A Eleme		Tabli Nuci	e of lides	Sulfur N=2
 Database + Calculations 	DataBase	0 - AME2016 (database)	•	Beta- de	сау	N		? Discovery
 only Calculations 	Formula	2 - LDM#1 + shell corrections (O.	T.) •	T _{1/2} 1. δT _{1/2} 0.			-	Bave
	Г			Mass Exce	Value s -17.6377	Error	MeV	Galculations
User's MassExcess File		AME2016.Ime	🖆 Browse	Binding Ener	y 344.1155	0.0028	MeV	X Quit
~ Ion mass				β⁺ dec	ay 7.1941 ay -18.6474	0.0597 0.3144	MeV MeV	ncip
 Take into account electro 	n binding energies for i	on mass calculations (Recommende	ed)		²ⁿ 10.9425 _{2p} 37.6454	0.0049	MeV MeV	Add Record
Isomer database		USER database			α -15.8924 m 6.7005	0.1048	MeV MeV	Delete Record Show Structure
isomer.dbf	Browse	user database.dbf	Browse	S	1p 19.9470 Put "*" into a c	0.1202 cell If value is u		⇐ 272 ➡
				Half-life (sec Experiment Databas		ulation — -decay	α-decay	p-emission
Make default		🗸 ОК 🛛 🗶 С	ancel ? Help	1.02e+0		1e-4 *		?

We need more experimental data

- Ion mass for E-M device precise settings and isotope selection
- Generation of X-ray spectra (in future with ETACHA4)

using

- AME2012 (or other Mass model)
- Ionization Energy Database (NIST Atomic Spectra Database Ionization Energies)

<i>Example:</i> ²³⁸ U ⁹²⁺ ion ma	ass
• v.9.8.114 atomic mass was used	238.0508 amu
• v.9.8.117 correction for e- masses	238.0003 amu
• v.9.10.131 correction for e- binding energies	238.0011 amu

A Element	7	Table of	/	3				"U"	Z = 92	Uranium		
		Nuclides	((Sh	ell Z	Q	Isoel Seq	Ground Shells	Ioniz. Energy	Total BE	
238 u 9	2 (=	Z 🔿	((7	92	0+	U	[Rn].5f3.6d.7s2	0.0062	761.513	
Stable		N 🔿			7	92	1+	Pa	[Rn].5f3.7s2	0.0116	761.507	
				N	5	92	2+	Th	[Rn].5f4	0.0198	761.495	
Atom & Ion Mass	ses ——				5	92	3+	Ac	[Rn].5f3	0.0367	761.476	
Charge G	round shell	Total binding	Ma	ass	5	92	4+	Ra	[Rn].5f2	0.046	761.439	
state co	onfiguration	energy (keV)	amu	GeV	5	92	5+	Fr	[Rn].5f	0.06	761.393	
		()			6	92	6+	Rn	[Hg].6p6	0.089	761.333	
Q=0 [R atom	Rn].5f3.6d.7s2	761.513	238.05079	221.742894	6	92	7+	At	[Hg].6p5	0.101	761.244	
			000 00444	004 000044	6	92	8+	Po	[Hg].6p4	0.116	761.143	
Q= 92		0	238.00114	221.696644	6	92	9+	Bi	[Hg].6p3	0.129	761.027	
Q=Z full stripped		0	238.00114	221.696644	6	92	10+	Pb	[Hg].6p2	0.158	760.898	
iuii strippeu					6	92	11+	ті	[Hg].6p	0.173	760.740	
Comments					6	92	12+	Hg	[Xe]	0.21	760.567	
onization energie					6	92	13+	Au	[Xe]	0.227	760.357	
http://www.nist.gov/pml/data/asd.cfm with in-house extrapolation for heavy ions. Their configutions are marked by the symbol "?".			n for heavy ions.	5	92	14+	Pt	[Xe].4f14.5d10	0.323	760.130		
inon configurione	are marice by				5	92	15+	Ir	[Xe].4f14.5d9	0.348	759.807	
The database rang	ge is 1 <= Z <=	= 110.			5	92	16+	Os	[Xe].4f14.5d8	0.375	759.459	
			Designations ground shell		5	92	17+	Re	[Xe].4f14.5d7	0.402	759.084	
For heavier ions n Binding energies a			ground show	1010.	5	92	18+	w	[Xe].4f14.5d6	0.431	758.682	
ıp all relevant ioni	zation energies	s.	[Ne] = 1s2.2		5	92	19+	Та	[Xe].4f14.5d5	0.458	758.251	
Mi(A,Z,Q)=Ma(A,	Z) - Q*Me+TBE	E(0)-TBE(Q)	[Ar] = [Ne].3 [Kr] = [Ar].30		5	92	20+	Hf	[Xe].4f14.5d4	0.497	757.793	
IselSeqIsoelectronic sequence Ground Shells Ground-state electronic shells		[Cd] = [Kr].4d10.5s2 [Xe] = [Cd].5p6	5	92	21+	Lu	[Xe].4f14.5d3	0.525	757.296			
			5	92	22+	Yb	[Xe].4f14.5d2	0.557	756.771			
oniz.Energy Ion Fotal BE Total b			[Hg] = [Xe].4f14.5d10.6s2 [Rn] = [Hg].6p6	5	92	23+	Tm	[Xe].4f14.5d	0.585	756.214		
INTEL INTEL D	inuing energy [vev]	1 1		4	92	24+	Er	[Xe].4f14	0.73	755.629	
	2	Link 🗸 i	Exit		5	92	25+	Но	[Cd].4f14.5p5	0.77	754.899	

Compound material database

Compounds				×
	Common Name	Atomic Stoich.	Density	X Cancel
Nuclear physics materials	Aluminum Oxide alpha	A12 03	3.98 👻	Input
Plastic-polimers	Bakelite	H9 C9 O1	1.45 -	Input
Liquids	1-2 - Ethanediol	H6 C2 O2	1.1088 -	Input
Gases	Acetylene	H2 C2	0.0010825	Input
	Air (gas mixture **)	021 N78 Ar1	0.001205	
	Allene Propadiene	H4 C3	0.0016656	
	Ammonia	H3 N1	0.00070804	
	Butane	H10 C4	0.0024164	
	1-3-Butadiene	H6 C4	0.0022488	
	Carbon Dioxide	C1 02	0.0018296	
	Carbon Tetrafluoride	Cl F4	0.0036586	
	Cyclobutane	H8 C4	0.0023326	
	Cyclopropane	H6 C3	0.0017495	
	Cyclopropene	H4 C3	0.0016656	
	1-2 Difluorethane	H4 C2 F2	0.0027459	
	1-2 Difluorethene	H2 C2 F2	0.0026621	
	Ethane	H6 C2	0.0012501	
	Ethane - Hexafluoride	C2 F6	0.0057376	
	Ether Dimethyl	H6 C2 O1	0.0019153	
	Ethylene	H4 C2	0.0011663	
	Ethylene Sulfide	H4 C2 S1	0.0024994	
	Hydrogen Sulfide	H2 S1	0.0014169	
	Methane	H4 C1	0.00066697	
	Methane Chloro-Tri.Freongas	C1 F3 CL1	0.0043427	
	Methane Dichloro-Di. Freon-	12 C1 F2 CL2	0.0050268	
	Methane Dichloro-Fl. Freon-	21 H1 C1 F1 CL2	0.0042789	
	Nitric Oxide	N1 O1	0.0012475	
	Nitrous Oxide	N2 01	0.0018298	
	Pl0 (10% Methane in Argon)	** C2 H8 Ar90	0.00159	
	Propane	H8 C3	0.0018333	
	Propylene Sulfide	H6 C3 S1	0.0030826	
	Sulfur Hexafluoride	F6 S1	0.006072	
01/25/2021	Water vapor	H2 O1	0.00074895	

11

LISE⁺⁺ isomer database

Decay branching ratio vs. Radiation Residue calculation

https://people.nscl. msu.edu /~thoennes/isotopes/							
Discovery of Nuclides Project							
News: 280Ds discovered	Video						
January 23, 2021	 2012 Timeline Movie 2015 Timeline Movie 						
Yesterday, the first isotope of 2021 was discovered. Samark-Roth et al. reported the first observation of 280Ds in the paper "Spectroscopy along Flerovium Decay Chains: Discovery of 280Ds and an Excited State in 282Cn" in Phys. Rev. Lett. 126 (2021)	• 2018 Timeline Movie Other links						

it is useful for experiment planning how nucleus has been discovered: beam, target, reaction, energy, location.

https://people.nscl.msu.edu/~thoennes/isotopes/abstracts/62-samarium/62-Sm-129.pdf

129Sm

Xu et al. first identified ¹²⁹Sm in 1999 and reported the results in "New β -delayed proton precursors in the rare-earth region near the proton drip line" [1]. A 165 MeV ³⁶Ar beam was accelerated with the Lanzhou sector-focused cyclotron and bombarded an enriched ⁹⁶Ru target. Proton- γ coincidences were measured in combination with a He-jet type transport system. "A 134-keV γ line found in the proton coincident $\gamma(x)$ -ray spectrum in the ³⁶Ar+⁹⁶Ru reaction was assigned to the γ -ray transition between the lowest-energy 2⁺ state and 0⁺ ground state in the 'daughter' nucleus ¹²⁸Nd of the βp precursor ¹²⁹Sm."

[1] S.-W. Xu et al., Phys. Rev. C 60 (1999) 061302.

Adapted from E. May and M. Thoennessen, At. Data Nucl. Data Tables 99 (2013) 1

Excitation energy of (fissile) nuclei after abrasion

³⁵CI*

E_x=62.8 MeV

σ=3.8e-9 mb

¹⁸⁹Ho*

E_v=306.5 MeV

A3

²²⁴Po*

S

E_x=368 MeV

σ=1.6 mb

σ=3.8e-9 mb

Excited

Mass number (A

Decreasing excitation energy by 10%

shifts ¹⁸⁹Ho de-excitation distribution by

Excitation energy variation makes

large impact in high-Z neutron-rich

data

(cross sections, neutron multiplicity?)

and theoretical study are required to

obtain an excitation energy function in

order to improve fast Abrasion-Fission

production cross-sections

Final

Z=67

~1.3 neutrons

Experimental

models.

Needs in detailed information

LISE⁺⁺ Abrasion-Ablation model calculation

- Fissile nuclei after abrasion of ²³⁸U by ¹²C target
- Colors : cross-section
- Contours : excitation energy

measurement

Limiting temperature

Needs in detailed information

The "limiting" temperature defines the breakup stage (multifragmentation)

LISE⁺⁺ Abrasion-Ablation uses T=f(A)

 Break-up parameters 			
The limiting temperature calculated from the curve based on three	T (A=050)=	8	8.0
points for masses 50,150,250	T (A=150)=	5.9	5.9
Default values from Zi.Li & M.Liu,	T (A=250)=	4.7	4.7
PRC69, 034615 (2004), Fig.5	Diffuseness=	0.05	0.05

GSI Abra-Abla uses T=f(Z,<N/Z>)

Determination of the Freeze-Out Temperature by the Isospin Thermometer

P. Napolitani, et al., Physics of Atomic Nuclei volume 66, pages1471–1477(2003)

- Experimental study of abrasion mechanism:
 - measurement of fragment production cross section for all channels

٠

- excitation energy determination
- temperature determination
- □ Theoretical study

Data

- Atomic Masses
- Isomeric states database

 \bigcirc

 $\overline{\mbox{\scriptsize ($)}}$

Reactions with exotic nuclei

- Fission barrier database
- Experimental production cross sections
- Experimental fragment momentum distributions

Needs for detailed information

- Excitation energy of (fissile) nuclei after abrasion
- Limiting temperature