The Atlas of Gamma-ray Spectra from the Inelastic Scattering of Reactor Fast Neutrons

Amanda Lewis1, Lee Bernstein2,3, Aaron Hurst3

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Fluor Marine Propulsion, LLC, a wholly owned subsidiary of Fluor Corporation.

1 Naval Nuclear Laboratory
2 Lawrence Berkeley National Laboratory
3 University of California, Berkeley
The “Baghdad Atlas” [1] is a large compilation of identified gamma-ray intensities from a fast reactor spectrum

- The neutron source was the Al-Tuwaitha research facility outside of Baghdad in the 1970s
 - A low-energy filter was used to simulate a fast reactor spectrum

- All intensities were measured in reference to the 847 keV gamma ray in ^{56}Fe

- A single Ge(Li) detector at 90° measured the gamma rays from 105 targets

- Uncertainties
 - Flux
 - Statistics
 - Detector efficiency
 - Non-linearity in energy
 - Gamma-ray self-absorption
 - Sample

 No model of the reactor, so this is determined by fitting

 Provided by the experimentalists (at 2-sigma)

 Given with the normalization to ^{56}Fe

The Baghdad Atlas provides a broad ability to uncover problems in evaluated inelastic cross sections

- The Atlas tests elastic and inelastic scattering and discrete and statistical structure

- 19F inelastic scattering was shown to be problematic using machine learning on k_{eff} benchmarks [2]

- The Atlas can also find the problem, based on the 197.1 keV gamma:
 - With a preliminary flux shape, the ENDF/B-VIII.0 value is around 50% lower than the Atlas value.

[3] EXFOR entry 41186
The Atlas data tables are already available and the flux will be published soon

- A digitized version of the database is available at nucleardata.berkeley.edu/atlas

- A future publication will detail the flux shape that should be used
 - We don’t have an MCNP input – the setup is not well characterized
 - Instead, the flux shape is fit based on the 56Fe values

- A new database should be developed for “quasi-differential” benchmarks
 - Differential in reaction, but integral in energy
 - More benchmarks like the Baghdad Atlas need to be created, with:
 - More modern technology
 - Well-characterized neutron sources and experimental setups
 - Neutron spectra that are directly relevant to applications
 - The ENDF format does not allow for direct calculation of gamma-ray cross sections to compare to the Atlas values for many isotopes