energy

Nuclear Data, Validation Methods, and Integral Needs

Dr. Bradley T. Rearden Director of Engineering, Xe-Mobile

DISTRIBUTION STATEMENT F. Further dissemination only as directed by The Strategic Capabilities Office, 675 N. Randolph St, Arlington VA 22203, 28 Aug 2018, or higher DoD authority.

January 27, 2021

Novel Applications of Microreactors

Defense & forward bases

As the US Military prepares for "nearpeer" adversaries of the future, highly portable power with a high energy density will be a game-changing technology.

Highly Portable Power

energy

Disaster Relief

The ability to transport flexible electricity solutions that do not require fueling for months or years provides critical infrastructure to get railroads, water purification facilities, and hospitals powered again – within one week.

Be powered again – within one week

Remote Communities

Arid, Island and Alaskan/Canadian communities often use governmentsubsidized petroleum fuel deliveries to maintain their power. If their deliveries are disrupted, the impact can be significant.

Maintain Power

Fission Surface Power System

Nuclear Electric Propulsion

Nuclear Thermal Propulsion

Executive Actions and Appropriations

- Promoting Small Modular Reactors for National Defense and Space Exploration (Executive Order 13972, January 2021)
 - Demonstration of Commercial Reactors to Enhance Energy Flexibility at a Defense Installation
 - Defense Capabilities
 - Space Exploration
 - Domestic Fuel Supply
 - Common Technology Roadmap
- Launch of Spacecraft Containing Space Nuclear Systems (National Security Presidential Memorandum-20, August 2017)
 - Safety prescribed in terms of Total Effective Dose to population
- **DOE-NE** Advanced Reactor Demonstration Program ~\$200M/yr, operational reactors 2027-2030s
- DOD Mobile Microreactor \$70M FY21, demonstration unit in 2024
- **DARPA**/DRACO ??
- NASA NTP ~\$100M FY21
- NASA FSP Launch ready 10 kWe, 10-year lifetime, 3500 kg power plant by 2026
- NASA NEP Studies resuming in 2021

Nuclear data provide a foundation for performance and safety analysis

Concerns with changes in ENDF/V-III.0 without consideration for reactor applications

Validated Nuclear Data Needs

- Small and precise reactors require optimized power and lifetime predictions
 - Power distribution
 - Reactivity control and shutdown margin
 - Fission product inventories
- Close proximity to public and need for low mass solutions require precise source term and shielding data
 - Prompt neutrons and gammas from fission
 - Gamma emissions from fission product decay
 - Material activation and decay
 - Neutron and gamma attenuation

Thermal scattering law data

- Advanced moderators/reflectors are needed for small HA-LEU cores
- YH_x is of interest for lower temperature applications
- NTP systems approach 3000 K for fuel and structural materials with H₂ as internal propellant
- Irradiation damage assessment is needed for wide range of materials
 - Damage cross sections should be included in ENDF libraries