Nuclear Data, Validation Methods, and Integral Needs

Dr. Bradley T. Rearden
Director of Engineering, Xe-Mobile

January 27, 2021
Novel Applications of Microreactors

Defense & forward bases
As the US Military prepares for “near-peer” adversaries of the future, highly portable power with a high energy density will be a game-changing technology.

Highly Portable Power

Disaster Relief
The ability to transport flexible electricity solutions that do not require fueling for months or years provides critical infrastructure to get railroads, water purification facilities, and hospitals powered again – within one week.

Be powered again – within one week

Remote Communities
Arid, Island and Alaskan/Canadian communities often use government-subsidized petroleum fuel deliveries to maintain their power. If their deliveries are disrupted, the impact can be significant.

Maintain Power
Space Nuclear Applications

Fission Surface Power System

Nuclear Electric Propulsion

Nuclear Thermal Propulsion

Images: NASA
Executive Actions and Appropriations

- **Promoting Small Modular Reactors for National Defense and Space Exploration** (Executive Order 13972, January 2021)
 - Demonstration of Commercial Reactors to Enhance Energy Flexibility at a Defense Installation
 - Defense Capabilities
 - Space Exploration
 - Domestic Fuel Supply
 - Common Technology Roadmap

- **Launch of Spacecraft Containing Space Nuclear Systems** (National Security Presidential Memorandum-20, August 2017)
 - Safety prescribed in terms of Total Effective Dose to population

- **DOE-NE** Advanced Reactor Demonstration Program ~$200M/yr, operational reactors 2027-2030s
- **DOD** Mobile Microreactor $70M FY21, demonstration unit in 2024
- **DARPA/DRACO** – ??
- **NASA NTP** ~$100M FY21
- **NASA FSP** – Launch ready 10 kWe, 10-year lifetime, 3500 kg power plant by 2026
- **NASA NEP** – Studies resuming in 2021
Nuclear data provide a foundation for performance and safety analysis.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Tool/Model</th>
<th>Analysis Type</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core neutronics</td>
<td>SCALE/KENO/ORIGEN</td>
<td>Steady-state Monte Carlo neutron transport and transmutation</td>
<td>Power Profiles, Core life, Burnable poison design, Temperature and control element reactivity</td>
</tr>
<tr>
<td>Cross section generation</td>
<td>Serpent</td>
<td>Steady-state Monte Carlo neutron transport</td>
<td>Generated few-group cross sections for AGREE-Xe and verified reactivity results from SCALE and MCNP</td>
</tr>
<tr>
<td>Photon/Neutron Transport</td>
<td>MCNP</td>
<td>Steady-state Monte Carlo neutron and photon transport</td>
<td>Ex-core heating rates</td>
</tr>
<tr>
<td>Reactor Thermo-fluid Analysis</td>
<td>StarCCM+</td>
<td>High fidelity heat conduction and thermo-fluid dynamic behavior</td>
<td>Spatially resolved temperatures and coolant flow rates</td>
</tr>
<tr>
<td>Coupled neutronic-thermal fluid analysis</td>
<td>AGREE-Xe</td>
<td>Steady-state and time-dependent neutron diffusion/heat conduction/ subchannel fluid behavior</td>
<td>Peak and average temperatures of structures during transient scenarios</td>
</tr>
<tr>
<td>Plant Dynamics</td>
<td>Flownex</td>
<td>Steady-state and time-dependent analysis of plant-wide behavior</td>
<td>Plant/Reactor response to perturbations and fault conditions. Startup, shutdown, and critical power maneuvers</td>
</tr>
<tr>
<td>Shielding</td>
<td>SCALE/MAVRIC/ORIGEN</td>
<td>Steady-state neutron and gamma transport, activation, decay</td>
<td>Ex-vessel dose and activation rates</td>
</tr>
<tr>
<td>Structural Dynamics</td>
<td>NASTRAN</td>
<td>Dynamic Finite Element Analysis</td>
<td>Static-equivalent accelerations to be used for stress analysis, Load Isolation System evaluation</td>
</tr>
<tr>
<td>Mechanical and thermal stress</td>
<td>Abaqus</td>
<td>Steady-state Finite Element Analysis</td>
<td>FEA-calculated stresses, to be compared against material allowables to determine if the parts meet design requirements</td>
</tr>
<tr>
<td>Instrumentation & Controls</td>
<td>PSCAD</td>
<td>Simulation of electric power conversion</td>
<td>Power Balance of EPCS with a notional load bank at steady state response of system to various load transients, including abnormal loads and fault conditions</td>
</tr>
<tr>
<td>Hazards Analysis (Fire, chemical, mechanical, electrical, etc.)</td>
<td>Abaqus</td>
<td>Identification of hazards associated with assembly, transport, and disassembly operations</td>
<td>Design requirements for hazard mitigation systems (e.g., Fire Detection and Suppression)</td>
</tr>
</tbody>
</table>
Concerns with changes in ENDF/V-III.0 without consideration for reactor applications
Validated Nuclear Data Needs

• **Small and precise reactors require optimized power and lifetime predictions**
 - Power distribution
 - Reactivity control and shutdown margin
 - Fission product inventories

• **Close proximity to public and need for low mass solutions require precise source term and shielding data**
 - Prompt neutrons and gammas from fission
 - Gamma emissions from fission product decay
 - Material activation and decay
 - Neutron and gamma attenuation

• **Thermal scattering law data**
 - Advanced moderators/reflectors are needed for small HA-LEU cores
 - YHₓ is of interest for lower temperature applications
 - NTP systems approach 3000 K for fuel and structural materials with H₂ as internal propellant

• **Irradiation damage assessment is needed for wide range of materials**
 - Damage cross sections should be included in ENDF libraries