Perspectives from the ExaSMR Project: Nuclear Data Needs and Opportunities

Paul K. Romano
Computational Scientist, Argonne National Laboratory

WANDA 2021: Advanced Computing for Nuclear Data Session
January 29, 2021
Background

- ExaSMR project
 - Joint ORNL/ANL/MIT project on coupled Monte Carlo–CFD simulations for small modular reactors funded by the Exascale Computing Project
 - Several modeling challenges: small size results in large spatial gradients, natural circulation, no operational data
 - Use exascale resources to produce “virtual experiment” datasets that can be used to validate low-order engineering simulations

- Software stack:
 - Particle transport: OpenMC (ANL/MIT) and Shift (ORNL)
 - Thermal hydraulics: Nek5000 / NekRS
 - Coupling: ENRICO
Background

- ExaSMR project
 - Joint ORNL/ANL/MIT project on coupled Monte Carlo–CFD simulations for small modular reactors funded by the Exascale Computing Project
 - Several modeling challenges: small size results in large spatial gradients, natural circulation, no operational data
 - Use exascale resources to produce “virtual experiment” datasets that can be used to validate low-order engineering simulations

- Software stack:
 - **Particle transport**: OpenMC (ANL/MIT) and Shift (ORNL)
 - Thermal hydraulics: Nek5000 / NekRS
 - Coupling: ENRICO

Nuclear data considerations are crucial for particle transport
Computational Needs

- Current resources
 - OLCF Summit: 200 PF, IBM POWER9 CPU, NVIDIA Volta V100 GPU
 - ALCF Theta: 11.7 PF, Intel Xeon Phi CPU
- Future resources
 - OLCF Frontier: > 1.5 EF, AMD EPYC CPU, AMD Radeon Instinct GPU
 - ALCF Aurora: ≥ 1 EF, Intel Xeon CPU, Intel Xe GPU
OpenMC Data Pipeline

- Incident neutron
- Thermal scattering
- Photoatomic
- Atomic relaxation
- Decay
- Fission yields

openmc.data
OpenMC Data Pipeline

1. Incident neutron
2. Thermal scattering
3. Photoatomic
4. Atomic relaxation
5. Decay
6. Fission yields

- NJOY
- ACE
- openmc.data
- Neutron/TSL (HDF5)
OpenMC Data Pipeline

- Incident neutron
- Thermal scattering
- Photoatomic
- Atomic relaxation
- Decay
- Fission yields

- NJOY
- ACE
- openmc.data

- Neutron/TSL (HDF5)
- Multipole (HDF5)
OpenMC Data Pipeline

- Incident neutron
- Thermal scattering
- Photoatomic
- Atomic relaxation
- Decay
- Fission yields

NJOY

ACE

openmc.data

- Neutron/TSL (HDF5)
- Multipole (HDF5)
- Depletion chain (XML)
OpenMC Data Pipeline

- Incident neutron
- Thermal scattering
- Photoatomic
- Atomic relaxation
- Decay
- Fission yields

Transport Solver
- Neutron/TSL (HDF5)
- Multipole (HDF5)
- Depletion chain (XML)
Challenges: Complex Data Hierarchies

- Both target exascale platforms are based on GPU architectures
- Nuclear data is needed at many temperatures; large size of data
- Data size can place a significant burden on I/O time
- Want to preserve fidelity of original data in ENDF; multitude of data formalisms pose programming challenges:
 - Inability to use polymorphism
 - Data transfer between host and GPU
Challenges: Temperature Dependence

- In the resolved resonance range, OpenMC/Shift rely on the *windowed multipole* method
 - Resonance parameters stored as complex poles/residues
 - Can analytically Doppler broaden cross sections
 - Significant reduce memory requirements but requires more operations to evaluate cross section
- Does not help in unresolved range or thermal energies
Opportunities: Machine Learning

- Temperature dependence of thermal scattering and unresolved resonance range:
 - Brute force interpolation on tables stored at many temperatures
 - Again, memory requirements quickly go up depending on temperature grid

Need innovations in methods for thermal scattering/URR → **Machine learning** may be suitable given lack of theoretical models for temperature dependence
Opportunities: Model-based Physics

- Evaluations continue to grow in size
- For HPC simulations, strong incentive to use less memory and more FLOPs
- Integrating model-based physics is very attractive for Monte Carlo transport simulations
 - Multipole format is essentially just resonance parameters
 - Fission event generators (FREYA, CGMF, GEF, etc.)
 - Thermal scattering physics with just phonon frequencies?
- Better physics and better performance
Thank you!