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Physics-awareness – what is it?

• Think: ML obeying conservation laws (symmetries, invariances) –
incorporate physics into ML setup objective (e.g. loss function)

• Benefits: 
• Trainable with simulated data; 
• Improving understanding of uncertainties and/or short comings of the modelling;
• Expose non-physical components / noise
• Build tools to improve simulators by working with real data (unsupervised learning) 

=> if done in a well controlled way allows to gain knowledge => impact on analytic 
solutions / theory / modelling; 
• Towards explainable ML: eventually learn physics from the data alone
• …
• note: in general, this is more than just apply “standard” ML techniques
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(selected) ML areas in physical sciences 4HEP BIASED

Some challenges (and thus opportunities!) – national lab driven:

1. The biggest scientific datasets with complex, high-dimensional phase space
• Challenging pattern recognition; benefits from physics-aware learning
• Strict requirements on uncertainty quantification / interpretability

2. High-fidelity, first-principles simulations / theory
• Can scaffold / exploit simulations with NNs for precise likelihood-free inference
• Often too slow and need to be accelerated with generative models

3. Simulation-based inference is complemented by data-driven learning
• Anomaly detection is becoming a key across the area
• Often require fast inference (trigger), feedback (accelerator control), and/or environment awareness 

(hazards/safety)

Compilation Ben Nachman, MP



(selected) ML areas in physical sciences 5HEP BIASED

Compilation Ben Nachman, MP

1. The biggest scientific datasets with complex, high-dimensional phase space

• Particle tracking, noise mitigation, calibration, particle/jet/event classification, ...
• Uncertainty quantification, interpretable observables/learning, robust learning...

2. High-fidelity, first-principles simulations / theory

• Unfolding (deconvolution), parameter estimation, strong force dynamics, ...
• Generative models for calorimeter emulation and cosmology; accelerator simulation

3. Simulation-based inference is complemented by data-driven learning

• Searching for new particles and forces, mixed data/simulation labels, ...
• Accelerator stability / control, learning in the presence of radioactive hazards, …

arXiv: 2003.11603,2007.00149,1910.06286, trackML Kaggle, 1707.08600, ATL-PHYS-PUB-2018-013, 1910.03773, ATL-PHYS-PUB-2020-001, 1511.05190, ATL-PHYS-PUB-2017-017, 
1807.10768, 2009.05930, ATLAS b/c-jet tagging (@Cori), top quarks, 1806.05667, 1909.03081, 1910.08606, 1910.10046, 1810.00835, 1902.07180, 1906.06429, 2010.02926,  
2010.09745, 2007.14400, 1911.09107, 2010.03569, 1907.08209, 1612.04262, 1910.11530, 1906.06562, 2012.06582 2009.03796, 1712.10321, 1705.02355, 1701.05927, 
1706.02390,  1711.08813, Snowmass LOI, 2005.02983, 2009.02205, 2001.05001, 2001.04990, 1902.02634, 1805.02664, LHC Olympics,  slides, 1708.02949, 1702.00414, 
1801.10158, paper, ...

https://arxiv.org/abs/2003.11603
https://arxiv.org/abs/2007.00149
https://openlab.cern/sites/openlab.web.cern.ch/files/2018-04/The%20TrackML%20challenge.pdf
https://indico.cern.ch/event/852553/contributions/4057190/attachments/2127774/3582682/Ryan_Roberts_IML_Workshop_211020%20.pdf
https://arxiv.org/abs/1910.10046
https://arxiv.org/abs/1810.00835
https://arxiv.org/abs/2010.02926
https://arxiv.org/abs/2012.06582
https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF2_CompF3-AF1_AF6_Lehe-075.pdf
https://lhco2020.github.io/homepage/
https://conferences.lbl.gov/event/463/contributions/3899/attachments/3025/1536/Goldblum-Transferability-Oct2020.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.194801


Recent example of explainable, physics aware ML
Explainable machine learning of the underlying physics of high-energy particle collisions
https://arxiv.org/abs/2012.06582
… proof-of-concept of our White Box AI approach using a Generative Adversarial Network (GAN) which learns from a 
DGLAP-based parton shower Monte Carlo event generator.
From “final state” particles learn internal workings of QCD – e.g. Altarelli-Parisi splitting function

Learning from final state 
distribution the internal 
splitting probability 
density f

Extract physics from the inner elements of 
the network – the ”white box” to look at

z = fraction of momentum carried by a particle in a 1->2 split

Methodology extendable to 
other areas –> e.g. 
modelling of nuclear 
reactions

<latexit sha1_base64="sB859HvOu102YXkAT9QMJbYyy70=">AAACc3ichVFNaxsxENVu0jZxv5wUcskhIm7BgdbslpD2GBoIPaZQJwHLNlpZ6xXWSos0m+IK/YH+vN76L3rJPVp7D21S6IDQ472Z0ehNVklhIUl+RfHG5qPHT7a2O0+fPX/xsruze2l1bRgfMi21uc6o5VIoPgQBkl9XhtMyk/wqW5w1+tUNN1Zo9RWWFR+XdK5ELhiFQE27P0iWu3Pfb65q4oTy/ggTI+YFUGP0N0zcSpo64T3xmJBOW7HOxkSDKLnF+cQp33ffJ27h3xIoONA1rArRAH/0v77Tbi8ZJKvAD0Hagh5q42La/UlmmtUlV8AktXaUJhWMHTUgmOS+Q2rLK8oWdM5HASoa5hy7lWcevwnMDOfahKMAr9g/KxwtrV2WWcgsKRT2vtaQ/9JGNeQfx8Gaqgau2PqhvJYYNG4WgGfCcAZyGQBlRoRZMSuooQzCmhoT0vtffggu3w/Sk0Hy5bh3+qm1Ywvto0PURyn6gE7RZ3SBhoih39FedBDh6Dbejw/j1+vUOGprXqG/In53B3lewCE=</latexit>

F(pin) ! {pi}
F(pin ⌦ fn(zk, ✓k,�k)) ! {pi}

Generic GAN
White Box
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Recent example of explainable, physics aware ML
Explainable machine learning of the underlying physics of high-energy particle collisions
https://arxiv.org/abs/2012.06582
… proof-of-concept of our White Box AI approach using a Generative Adversarial Network (GAN) which learns from a 
DGLAP-based parton shower Monte Carlo event generator.
From “final state” particles learn internal workings of QCD – e.g. Altarelli-Parisi splitting function

Learning from final state 
distribution the internal 
splitting probability 
density

Extracted from inner elements of the 
network – the ”white box” to look at

Z = fraction of momentum of the original 
parton carried by a final state particle

z = fraction of momentum carried by a particle in a 1->2 split

Methodology extendable to 
other areas –> e. g. 
modelling of nuclear 
reactions

<latexit sha1_base64="OTy09TP8BhKy3051hdGx+/gDvQ4=">AAACB3icbZDLSsNAFIYn9VbrLepSkGARKkhJRNRl0Y3LCvYCbSyT6aQdOpmEmROhhuzc+CpuXCji1ldw59s4abPQ1h8GPv5zDmfO70WcKbDtb6OwsLi0vFJcLa2tb2xumds7TRXGktAGCXko2x5WlDNBG8CA03YkKQ48Tlve6Cqrt+6pVCwUtzCOqBvggWA+Ixi01TP3/UrycJeM0uMuDCngKUZDlkF61DPLdtWeyJoHJ4cyylXvmV/dfkjigAogHCvVcewI3ARLYITTtNSNFY0wGeEB7WgUOKDKTSZ3pNahdvqWH0r9BFgT9/dEggOlxoGnOwMMQzVby8z/ap0Y/As3YSKKgQoyXeTH3ILQykKx+kxSAnysARPJ9F8tMsQSE9DRlXQIzuzJ89A8qTpnVfvmtFy7zOMooj10gCrIQeeohq5RHTUQQY/oGb2iN+PJeDHejY9pa8HIZ3bRHxmfP3Rkma8=</latexit>

f(zk, ✓k,�k)

<latexit sha1_base64="Dt/vkdKn25ZhyslhYGUi3y8WPX8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gOaWDbbTbt0dxN2N0oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWZemHCmjet+O6WV1bX1jfJmZWt7Z3evun/Q1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaScc30z9ziNVmsXy3kwSGgg8lCxiBBsrPfiZH0ZZ0s9Ynvt5v1pz6+4MaJl4BalBgWa/+uUPYpIKKg3hWOue5yYmyLAyjHCaV/xU0wSTMR7SnqUSC6qDbHZ1jk6sMkBRrGxJg2bq74kMC60nIrSdApuRXvSm4n9eLzXRVZAxmaSGSjJfFKUcmRhNI0ADpigxfGIJJorZWxEZYYWJsUFVbAje4svLpH1W9y7q7t15rXFdxFGGIziGU/DgEhpwC01oAQEFz/AKb86T8+K8Ox/z1pJTzBzCHzifP0qMkwc=</latexit>

{pi}
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Other GAN applications

Selection from slide by B. Nachman, LBL

CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer 
Electromagnetic Calorimeters with Generative Adversarial Networks

https://arxiv.org/abs/1712.10321

ForSE: a GAN based algorithm for extending CMB 
foreground models to sub-degree angular scales
https://arxiv.org/abs/2011.02221

CosmoGAN: creating high-fidelity weak lensing 
convergence maps using Generative Adversarial Networks
https://arxiv.org/abs/1706.02390
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New horizons - challenges

• Explainable AI / interpretable ML
• Automated discovery

• Physics laws inference or event of interest detection directly from data
• Interesting discussion: https://www.frontiersin.org/articles/10.3389/frai.2020.00025/full

• Uncertainties evaluation
• e.g.: Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty 

- https://arxiv.org/abs/2011.07586
• Learning on ensemble basis not only ‘event-based’

• e.g.: E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once -
https://arxiv.org/abs/2101.07263

• Graph based ML – relational mapping
• e.g.: A Comprehensive Survey on Graph Neural Networks - https://arxiv.org/abs/1901.00596
• … there is an increasing number of applications where data are generated from non-Euclidean 

domains and are represented as graphs with complex relationships and interdependency between 
objects…
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Selected problems in physics aware ML

• Availability of models (& simulators)
• Need for supervised vs. unsupervised (or partially supervised) learning

• Availability of data
• ‘simple’ statistics – precision of measurements

• Small variance – ‘mode collapse’ problem (also could be present in simulated sets)

• Quality of data
• Purely labelled? not-labelled? Noisy or inconsistent?
• Sufficient knowledge of uncertainties?
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Recent example of explainable, physics aware ML
Explainable machine learning of the underlying physics of high-energy particle collisions
https://arxiv.org/abs/2012.06582
… proof-of-concept of our White Box AI approach using a Generative Adversarial Network (GAN) which learns from 
a DGLAP-based parton shower Monte Carlo event generator.
From “final state” particles learn internal workings of QCD - Altarelli-Parisi splitting function, the ordering variable of 
the shower, and the scaling behavior.

• Two neural networks: the generator (“forger”) and discriminator (“detective”) 
• Simultaneously optimize both, causing both to be in competition with each other 

(Nash equilibrium)
• Inner workings (splitting kernels) of the NNs forced to produce physical splittings
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General scope ML4Sci(ence)
Data
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• Data curation and 
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AI Science Applications: One per Planet

AI Enabled
Experimental Workflows

(tell me how to make it)

…materials, polymers, organisms…

…self-driving labs, synthesis search…

• data Sets
• literature
• science “news”
• strategy

Cleaned
Updated
Annotated
Aggregated
Interpreted

AI Enabled 
Scientific Comprehension

(tell me what it means)

AI Enabled 
Design Workflows

(tell me what to make)

Insight?

From AI4Sci / DOE
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Ai4Sci Subtopics
Science and Engineering
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Augmented 
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AI Science Services Building Blocks (examples)
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ML at WANDA • 2020 report – this talk was not to repeat it…
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Novel efforts – strength in community
https://arxiv.org/abs/2101.08320
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Food for a thought: 
Automated data mining

• Leverage NLP? – an example from other field…

https://github.com/materialsintelligence/matscholar

Named Entity Recognition and Normalization Applied to 
Large-Scale Information Extraction from the Materials Science 
Literature | Journal of Chemical Information and Modeling
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00470

https://www.nature.com/articles/s41586-019-1335-8
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