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Physics-awareness —what is it?

* Think: ML obeying conservation laws (symmetries, invariances) —
incorporate physics into ML setup objective (e.g. loss function)

* Benefits:
* Trainable with simulated data;
e Improving understanding of uncertainties and/or short comings of the modelling;
* Expose non-physical components / noise

 Build tools to improve simulators by working with real data (unsupervised learning)
=> if done in a well controlled way allows to gain knowledge => impact on analytic
solutions / theory / modelling;

* Towards explainable ML: eventually learn physics from the data alone

* note: in general, this is more than just apply “standard” ML techniques



(selected) ML areas in physical sciences “.,,_

Some challenges (and thus opportunities!) — national lab driven:

1. The biggest scientific datasets with complex, high-dimensional phase space
* Challenging pattern recognition; benefits from physics-aware learning
* Strict requirements on uncertainty quantification / interpretability

2. High-fidelity, first-principles simulations / theory
* Can scaffold / exploit simulations with NNs for precise likelihood-free inference

» Often too slow and need to be accelerated with generative models

3. Simulation-based inference is complemented by data-driven learning
 Anomaly detection is becoming a key across the area
» Often require fast inference (trigger), feedback (accelerator control), and/or environment awareness

(hazards/safety)

Compilation Ben Nachman, MP



(selected) ML areas in physical sciences “.,,_

Particle tracking, noise mitigation, calibration, particle/jet/event classification, ...

. , interpretable observables/learning,

Unfolding (deconvolution), parameter estimation, strong force dynamics, ...

. ; accelerator simulation

Searching for new particles and forces, mixed data/simulation labels, ...

. , learning in the presence of radioactive hazards, ...

arXiv: 2003.11603,2007.00149,1910.06286, trackML Kaggle, , ATL-PHYS-PUB-2018-013, 1910.03773, ATL-PHYS-PUB-2020-001, 1511.05190, ATL-PHYS-PUB-2017-017,
1807.10768, 2009.05930, ATLAS b/c-jet tagging (@Cori), top quarks, 1806.05667, , 1810.00835, 1902.07180, 1906.06429, 2010.02926,
1911.09107, 2010.03569, 1907.08209, 1612.04262, 1910.11530, 1506.06562, 2012.06582
Snowmass LOI, 2005.02983, 2009.02205, 2001.05001, 2001.04990, 1902.02634, 1805.02664, LHC Olympics, slides, 1708.02949, 1702.00414,

1801.10158,

Compilation Ben Nachman, MP


https://arxiv.org/abs/2003.11603
https://arxiv.org/abs/2007.00149
https://openlab.cern/sites/openlab.web.cern.ch/files/2018-04/The%20TrackML%20challenge.pdf
https://indico.cern.ch/event/852553/contributions/4057190/attachments/2127774/3582682/Ryan_Roberts_IML_Workshop_211020%20.pdf
https://arxiv.org/abs/1910.10046
https://arxiv.org/abs/1810.00835
https://arxiv.org/abs/2010.02926
https://arxiv.org/abs/2012.06582
https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF2_CompF3-AF1_AF6_Lehe-075.pdf
https://lhco2020.github.io/homepage/
https://conferences.lbl.gov/event/463/contributions/3899/attachments/3025/1536/Goldblum-Transferability-Oct2020.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.194801

Recent example of explainable, physics aware ML

Explainable machine learning of the underlying physics of high-energy particle collisions
https://arxiv.org/abs/2012.06582
... proof-of-concept of our White Box Al approach using a Generative Adversarial Network (GAN) which learns from a

DGLAP-based parton shower Monte Carlo event generator.
From “final state” particles learn internal workings of QCD — e.g. Altarelli-Parisi splitting function

Extract physics from the inner elements of
the network — the "white box” to look at

Learning from final state
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https://arxiv.org/abs/2012.06582
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Other GAN applications 8

CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer
Electromagnetic Calorimeters with Generative Adversarial Networks
All of these
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ForSE: a GAN based algorithm for extending CMB
foreground models to sub-degree angular scales
https://arxiv.org/abs/2011.02221
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CosmoGAN: creating high-fidelity weak lensing

convergence maps using Generative Adversarial Networks
https://arxiv.org/abs/1706.02390

Selection from slide by B. Nachman, LBL



https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/2011.02221
https://arxiv.org/abs/1706.02390

New horizons - challenges

Explainable Al / interpretable ML

Automated discovery
* Physics laws inference or event of interest detection directly from data
* Interesting discussion: https://www.frontiersin.org/articles/10.3389/frai.2020.00025/full

Uncertainties evaluation

* e.g.: Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty
- https://arxiv.org/abs/2011.07586

Learning on ensemble basis not only ‘event-based’

e e.g.: E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once -
https://arxiv.org/abs/2101.07263

Graph based ML — relational mapping
* e.g.: A Comprehensive Survey on Graph Neural Networks - https://arxiv.org/abs/1901.00596

* ...thereis an increasing number of applications where data are generated from non-Euclidean
dgmains and are represented as graphs with complex relationships and interdependency between
objects...



https://www.frontiersin.org/articles/10.3389/frai.2020.00025/full
https://arxiv.org/abs/2011.07586
https://arxiv.org/abs/2101.07263
https://arxiv.org/abs/1901.00596

Selected problems in physics aware ML

* Availability of models (& simulators)
* Need for supervised vs. unsupervised (or partially supervised) learning

 Availability of data

* ‘simple’ statistics — precision of measurements
* Small variance — ‘mode collapse’ problem (also could be present in simulated sets)

e Quality of data
e Purely labelled? not-labelled? Noisy or inconsistent?
 Sufficient knowledge of uncertainties?



Extra Slides



Recent example of explainable, physics aware ML

Explainable machine learning of the underlying physics of high-energy particle collisions
https://arxiv.org/abs/2012.06582

... proof-of-concept of our White Box Al approach using a Generative Adversarial Network (GAN) which learns from
a DGLAP-based parton shower Monte Carlo event generator.

From “final state” particles learn internal workings of QCD - Altarelli-Parisi splitting function, the ordering variable of
the shower, and the scaling behavior.

 Two neural networks: the generator (“forger”) and discriminator (“detective”)
* Simultaneously optimize both, causing both to be in competition with each other

| (Nash equilibrium)
‘ i D Detective  Inner workings (splitting kernels) of the NNs forced to produce physical splittings

R: Real Data G: Generator (Forger) I: Input for Generator

https://medium.com/@devnag/generative- adversarial- networks- gans- in-50-1ines- of- code-pytorch-e81b79659e3f
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General scope ML4Sci(ence
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) ) ) and convergence quantification . .
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idati * Levels of parallelization * Explainability and . .
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Al Science Applications: One per Planet
Al Enabled

Design Workflows

‘ ...materials, polymers, organisms...

(tell me what to make)

Al Enabled

Experimental Workflows

‘ ...self-driving labs, synthesis search...

(tell me how to make it)

. : * literature paate :
Scientific Comprehension - —— Annotated —> Insight?

e science “news”
. strategy Aggregated

(tell me what it means) Interpreted




Ai4Sci Subtopics

| Science and Engineering |

From
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Al Science Services Building Blocks (examples)
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ML at WANDA » 2020 report — this talk was not to repeat it...

Experiments Evaluations

Compilations Processing saicaon GRElCaLonS

We strongly encourages entire ND community to embrace
the advances that Al/ML tools can have for your work!

.l
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Novel efforts — strength in community

Isubmitted on 20 Jan 2021] > https://arxiv.org/abs/2101.08320

The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy
Physics

A new paradigm for data-driven, model-agnostic new physics searches at colliders is

Gregor Kasieq , ) ) i i Lustaaf
Brooijmans, F emerging, and aims to leverage recent breakthroughs in anomaly detection and machine i
Donini, Javier| l€arning. In order to develop and benchmark new anomaly detection methods within this uc Le
Pottier, Pablo| framework, it is essential to have standard datasets. To this end, we have created the LHC n,
Veronica Sani Olympics 2020, a community challenge accompanied by a set of simulated collider events. Tsan,

Silviu-Marian Participants in these Olympics have developed their methods using an R&D dataset and then

Anew parad tested them on black boxes: datasets with an unknown anomaly (or not). This paper will review
detecti d
dthEe'f?z the LHC Olympics 2020 challenge, including an overview of the competition, a description of [
these Olymp| methods deployed in the competition, lessons learned from the experience, and implications This

ill : [
D . for data analyses with future datasets as well as future colliders.

@ents: 108 pages, 53 figures, 3 @



https://arxiv.org/abs/2101.08320

Food for a thought:
Automated data mining

* Leverage NLP? — an example from other field...

Letter | Published: 03 July 2019

Unsupervised word embeddings capture latent
knowledge from materials science literature

Vahe Tshitoyan &, John Dagdelen, Leigh Weston, Alexander Dunn, Zigin Rong, Olga Kononova, Kristin
A. Persson, Gerbrand Ceder & & Anubhav Jain

Nature 571, 95-98(2019) | Cite this article

https://www.nature.com/articles/s41586-019-1335-8

Named Entity Recognition and Normalization Applied to
Large-Scale Information Extraction from the Materials Science
Literature | Journal of Chemical Information and Modeling
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00470

https://github.com/materialsintelligence/matscholar

. MATSCHOLAR

matscholar (Materials Scholar) is a Python library for materials-focused natural language processing (NLP). It is
maintained by a team of researchers at UC Berkeley and Lawrence Berkeley National Laboratory as part of a project
funded by the Toyota Research Institute.

This library provides a Python interface for interacting with the Materials Scholar API, performing basic NLP tasks
on scientific text, and example notebooks on using these tools for materials discovery and design.

Documentation for the API can be found in this readme, as well as in the jupyter notebook: docs/demo.ipynb. If the
notebook fails to render on github, paste the link into nbviewer: https://nbviewer.jupyter.org.

You can find our official support forum here, under the "Matscholar" category: https://dicuss.matsci.org
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