Molten Chloride Reactor Experiment Nuclear Data Uncertainty Analysis and Needs

Tommy Cisneros
The MCFR roadmap includes non-nuclear and nuclear facilities.
Molten Chloride Reactor Experiment (MCRE)

[1] Energy Department (2020)

Molten Chloride Reactor Experiment – Southern Company Services, Inc (Birmingham, AL) will lead a project to design, construct and operate the Molten Chloride Reactor Experiment (MCRE) – the world’s first critical fast-spectrum salt reactor relevant to TerraPower’s Molten Chloride Fast Reactor.
Nuclear Data Uncertainty is Important to MCRE Design

- Excess reactivity mitigates ND uncertainty
- Control worth mitigates ND uncertainty
- Uncertainty Covariance Data defines which benchmarks are representative to the MCRE
MCRE Will Demonstrate Novel Neutronic Features

• Liquid Chloride Fuel Salt
 – Moving Fuel Salt
 – Chlorine in high importance region of the system
• Magnesium Oxide Reflector
 – Scattering on MgO reflects neutrons and moderates fast neutrons
• Plutonium Fuel
 – No Uranium in Fuel Salt Mix
Nuclear Data Uncertainty

• To quantify nuclear data induced uncertainties of a design, covariance matrices may be convoluted with the sensitivity vectors via the “sandwich formula” to produce the desired uncertainty of integral parameters R.

\[\Delta R^2 = S_R^T D S_R \]

- \(S_R \) Sensitivity of Integral Parameter R
- D Covariance Matrix

Sensitivity is Calculated with MCNP6 and ARMI® software

ENDF/B VIII.0 Covariance Data Processed with NJOY

Fissionable Isotopes: nu, (n, fission), (n, gamma), (n, 2n), elastic scattering, inelastic scattering, chi

Non Fissionable Isotopes: (n,gamma), elastic scattering, inelastic scattering, (n,proton)*

*35Cl (n,p) reaction is an important neutron loss mechanism in chloride salt systems

239Pu Drives the known ND Uncertainty: ~900 pcm

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Reaction</th>
<th>Uncertainty (pcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>239Pu</td>
<td>Fission</td>
<td>721</td>
</tr>
<tr>
<td>24Mg</td>
<td>Elastic Scat</td>
<td>378</td>
</tr>
<tr>
<td>239Pu</td>
<td>Nu</td>
<td>251</td>
</tr>
<tr>
<td>239Pu</td>
<td>(n,γ)</td>
<td>241</td>
</tr>
<tr>
<td>239Pu</td>
<td>Inelastic Scat</td>
<td>85</td>
</tr>
<tr>
<td>23Na</td>
<td>Elastic Scat</td>
<td>75</td>
</tr>
<tr>
<td>58Ni</td>
<td>Elastic Scat</td>
<td>68</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>908</td>
</tr>
</tbody>
</table>
INDEN Project is Advancing Nuclear Data of Many Uncertainty Drivers for the MCRE

INDEN is the follow up to the CIELO Pilot Project that produced several evaluated data files adopted by ENDF/B-VIII.0 and

- **INDEN (actinides):** ^{239}Pu
- **INDEN (structural materials):** ^{58}Ni
- **INDEN (light elements):** ^{16}O

$^{24}\text{Mg (mt}=2)\text{ May be an Opportunity to Reduce Uncertainty in the MCRE}$

- Given the limited attention, significant uncertainty and novel application – this analysis has highlighted ^{24}Mg as an opportunity for updates
 - ^{24}Mg data was ported from JENDL-3.2 (1995)
 - Covariance data was added from the lo-fidelity covariance project (2011)
35Cl (n,p) Gaps May Result in Uncertainty Biased Low

If you assume 100% cov >1.2MeV:

\[35\text{Cl} \left(\text{n}, \text{p} \right) \sigma: 30 \rightarrow 1472 \text{ pcm} \]

Total \(\sigma \): 900 \rightarrow 1729 \text{ pcm}
Recent Nuclear Data Experiments for $^{35}\text{Cl} (n,p)$

Conclusions

• The MCRE Nuclear Data Uncertainty is 900 -1700 pcm
• The known MCRE Nuclear Data Uncertainty is driven by 239Pu
• 35Cl (n,p) reaction has been identified as a need for chloride MSRs
 – Total ND Uncertainty increases from 900-1700 if covariance is assumed above 1.2 MeV
 – The research community is collecting new experimental data
 – New data should be integrated into new evaluations for cross sections and uncertainty
• MCRE S/U highlighted 24Mg scattering as an opportunity for advancement.
• Focus of INDEN aligns well with 239Pu uncertainty in MCRE
References

BACKUP
Commercial Power MCFR reactors are much more sensitive to ^{35}Cl

Negative reactivity of ^{35}Cl can be mitigated by chlorine enrichment or reducing leakage

MCFR-C 500-1200 MWe
PSI is updating Ni Evaluations in new releases of TENDL

Paul Scherrer Institute (PSI) is updating an evaluation of Ni as part of the INDEN (Structural Materials) effort.

Rochman, D; Koning, A; and Dzysiuk, N “TENDL-2019 and the Ni isotopes: what to expect” (2019) IAEA Nuclear Data Services