

Measuring the Antineutrino Spectrum Below 1.8 MeV

Presenter: Shikha Prasad Contributors: Wei Eng Ang, Rupak Mahapatra February 1st 2021

Workshop for Applied Nuclear Data Activities (WANDA 2021) January 25th – February 3rd 2021

Outline

Antineutrino production

- Potential applications in nuclear engineering
- Current measurement methods
- Coherent elastic neutrino-nucleus scatters
- Semiconductor detectors with Transition Edge Sensors
- Antineutrino spectrum calculation for NE&SC
- Cross-section determination
- Final reaction rates in the detector
- Current measurement setup
- Future plans

Prasad *et al.* at WANDA 2021

Antineutrino Production

- Antineutrinos are produced in the beta decay process
- Neutron rich fission products beta decay and release antineutrinos (~nearly 6 per fission event)
- Antineutrinos amount to ~5% of the released energy
- Detected for the first time at a nuclear reactor

Nucleus	$E_{ m Th}$	$\langle E_{ u} angle$	$\langle N_{ u} angle$	f_i/F
$^{235}\mathrm{U}$	201.92 ± 0.46	9.07 ± 0.32	6.14	0.967
$^{238}\mathrm{U}$	205.52 ± 0.96	11.00 ± 0.80	7.08	0.013
239 Pu	209.99 ± 0.60	7.22 ± 0.27	5.58	0.020
$^{241}\mathrm{Pu}$	213.60 ± 0.65	8.71 ± 0.30	6.42	< 0.001
$^{238}\mathrm{U} ightarrow ^{239}\mathrm{Pu}$	1.95	1.2	2.0	0.16
PHYSICAL REVIEW D 93, 013015 (2016)				

 $n^0
ightarrow p^+ + e^- + ar v_e$.

Potential applications of antineutrinos

- Nuclear and particle physics, astrophysics, geothermal physics
- Reactor monitoring for total power, isotopics, burnup
 - Provide a way to calibrate ex-core detectors;
 - Measure power spikes and scram within a few seconds;
 - Detect presence of covert reactors or used nuclear fuel storage;
 - Measure U/Pu ratio;
 - Measure age of fuel, especially used nuclear fuel;
 - Determine reactor burning or breeding (antineutrino from capture different);
 - Advance fuels: tag and track may not work as well;
 - Post accident monitoring;

Prasad *et al.* at WANDA 2021

Ā M

Engineering

Current Measurement Methods

- Traditional method uses inverse-beta-decay (IBD) to measure antineutrinos: $ar{
 u}_e + p o e^+ + n$
 - Cross-section of interaction (~10⁻⁴² barns), size tons-kilotons
 - Threshold of interaction 1.806 MeV
 - High maintenance, require photomultiplier tubes
- Necessitate the following characteristics:
 - NEED 1: An efficient detector providing high signal to noise quickly
 - NEED 2: Can provide detailed spectrum information
 - NEED 3: Ease of operation: low cost, low maintenance, portable
- ALTERNATIVE: coherent elastic neutrino-nucleus scatter (CNS)

Prasad *et al.* at WANDA 2021

Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), the University of Tokyo, Physics Today, 2018. 1-km underground, 50 kT of water

Coherent elastic neutrino-nucleus scatter (CNS)

- A mechanism for the antineutrino to scatter of a nucleus, the electrons, or the nucleons
- Postulated and formulated in 1974 by Freedman

$$rac{d\sigma_{CNS}}{dT_R} = rac{G_F^2 M}{2\pi} \Bigg[(q_
u + q_A)^2 + (q_
u - q_A)^2 + igg(1 - rac{T_R}{E_
u}igg)^2 - igg(q_
u^2 - q_A^2igg)rac{MT_R}{E_
u^2} \Bigg]$$

 σ_{CNS} is the coherent neutrino scattering cross-section G_F is the Fermi coupling constant q_V and q_A vector and axial charges N is the number of neutrons T_R is the recoiled nucleus' kinetic energy *M* is the mass of the detector nucleus E_v is the energy of the anti/neutrino *Z* is the atomic number

TEXAS A&M UNIVERSITY

Engineering

- First measured by the COHERENT group in 2017
 - Measurements performed for high energy neutrinos (not completely coherent w.r.t. nucleus)
- At lower energies as in from nuclear reactor (<10 MeV)

Prasad et al. at WANDA 2021

Ge/Si detectors with Transition Edge Sensors by Mahapatra Group, Texas A&M

General Procedure

- 1. Determine the antineutrino flux for reactor of interest
- 2. Calculate the CNS cross-sections for the detectors of choice
- Convolve the antineutrino flux and CNS cross-sections to determine reaction rates

Prasad *et al.* at WANDA 2021

Calculation of the antineutrino spectrum

- Determine the antineutrino flux for reactor of interest (10 m from 1-MW NE&SC core-Texas A&M)
 - Ab-initio or the summation method, for a given fissile isotope determine all fission products that decay by β-decay, obtain the β-decay spectrum, sum-up and subtract from β_{max} energy (our choice)

$$ho(E_{
u}) = \sum CY_i \sum BR_i P_i(E_{
u})$$

i is fission product index, CY_i is cumulative yield if isotope, BR_i is branching ratio, $P(E_{vi})$ is the neutrino energy distribution

$$P_i(E_
u) dE_
u = F(Z,E_
u) \Big[(E_{eta \max} - E_
u)^2 - m_0^2 c^4 \Big]_{
m W}^{rac{1}{2}}$$

$$imes rac{E_
u^2(E_{eta \max}-E_
u) dE_
u}{F_i} imes F_a(E_
u)$$

 $F(Z, E_{\nu})$ is the fermi function, $F_a(E_{\nu})$ is a correction factor for spin-parity-forbidden/allowed states Prasad *et al.* at WANDA 2021

Ā M

TEXAS A&M UNIVERSITY

Engineering

• 605 fission products for ²⁴¹Pu

Prasad *et al.* at WANDA 2021

Calculation of the Detection Cross-section

• The differential cross-section as a function of nucleus recoil energy is integrated up to

$$T_R^{Max} = rac{2E_
u^2}{M+2E_
u}$$

- The resulting cross-section for Ge and Si indicate germanium is more efficient over all energies
- Detector threshold of 20 eV nuclear recoil

Detector Technology	Flux-weighted cross-section
Germanium CNS	4 x 10 ⁻⁴ pb
Silicon CNS	3.2 x 10⁻⁵ pb
IBD	1.88 x 10 ⁻⁶ pb

TEXAS A&M UNIVERSITY

Engineering

W. E. Ang, S. Prasad, R. Mahapatra, Nucl. Inst. & Meth. A (submitted)

Reaction Rates in the Detector

$$R(E_
u) = N \sigma_{CNS}(E_
u) \phi(E_
u)$$

- At 20 eV nuclear recoil, minimum detectable neutrino energy on Si ~0.5 MeV, on Ge ~0.8 MeV (100 kg detector at 10 m)
 - ~43.4 events/day in Ge and ~7.8-events/day in Si
 - Antineutrinos missed nearly 32% in Ge and 19% in Si
- At 100 eV nuclear recoil, minimum detectable neutrino energy on silicon ~1.14 MeV, on germanium ~1.84 MeV
- The current inverse-beta-decay (IBD) threshold at ~1.8 MeV
 - ~2.1 events/day with water based and ~1.8 events/day with organic scintillation based IBD detectors
 - Antineutrinos missed nearly 50%

TEXAS A&M UNIVERSITY

Engineering

W. E. Ang, S. Prasad, R. Mahapatra, Nucl. Inst. & Meth. A (submitted)

MINER experiments plan

Prasad *et al.* at WANDA 2021

Summary and Future Plans

- Shown detector's response as a function antineutrino energies for CNS semiconductors (below 1.8 MeV)
 - Ge more efficient than Si detectors
 - Si provides lower threshold for detection
 - Both semiconductors can be developed to provide more efficient and smaller detectors (possibly cheaper)
- Formulate detector response beyond reaction rates
- Perform analysis for different cases: fuel cycles, burnup history, power levels
- Perform spectrum reconstruction of antineutrino energies from the detector response function above

Measuring the Antineutrino Spectrum Below 1.8 MeV

Presenter: Shikha Prasad Contributors: Wei Eng Ang, Rupak Mahapatra

February 1st 2021

Additional Remarks

Ρ

Antineutrino (MeV⁻¹ Fission⁻¹

 10^{0}

10⁻¹

10⁻²

$$F_{a}(E_{v}) = C(1 - E_{v}/E_{max})^{n}$$

$$F(Z,W) \approx a \frac{W}{p} + \left[\frac{c}{1 + (d/p^{2})}\right]$$
where $a = 2\pi\alpha Z, C = b - a, b = a/(1 - e^{-a}), \text{ and } d = \left(\frac{1}{2}\right)(b - 1)$