Measuring the Antineutrino Spectrum Below 1.8 MeV

Presenter: Shikha Prasad
Contributors: Wei Eng Ang, Rupak Mahapatra
February 1st 2021

Workshop for Applied Nuclear Data Activities (WANDA 2021)
January 25th – February 3rd 2021
Outline

Antineutrino production
Potential applications in nuclear engineering
Current measurement methods
Coherent elastic neutrino-nucleus scatters
Semiconductor detectors with Transition Edge Sensors
Antineutrino spectrum calculation for NE&SC
Cross-section determination
Final reaction rates in the detector
Current measurement setup
Future plans
Antineutrino Production

- Antineutrinos are produced in the beta decay process.
- Neutron rich fission products beta decay and release antineutrinos (~nearly 6 per fission event).
- Antineutrinos amount to ~5% of the released energy.
- Detected for the first time at a nuclear reactor.

\[n^0 \rightarrow p^+ + e^- + \bar{\nu}_e \]

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>E_{Th}</th>
<th>$\langle E_\nu \rangle$</th>
<th>$\langle N_\nu \rangle$</th>
<th>f_i/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{235}U</td>
<td>201.92 ± 0.46</td>
<td>9.07 ± 0.32</td>
<td>6.14</td>
<td>0.967</td>
</tr>
<tr>
<td>^{238}U</td>
<td>205.52 ± 0.96</td>
<td>11.00 ± 0.80</td>
<td>7.08</td>
<td>0.013</td>
</tr>
<tr>
<td>^{239}Pu</td>
<td>209.99 ± 0.60</td>
<td>7.22 ± 0.27</td>
<td>5.58</td>
<td>0.020</td>
</tr>
<tr>
<td>^{241}Pu</td>
<td>213.60 ± 0.65</td>
<td>8.71 ± 0.30</td>
<td>6.42</td>
<td><0.001</td>
</tr>
<tr>
<td>$^{238}\text{U} \rightarrow ^{239}\text{Pu}$</td>
<td>1.95</td>
<td>1.2</td>
<td>2.0</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Image by Joel Holdsworth

Prasad et al. at WANDA 2021
Potential applications of antineutrinos

- Nuclear and particle physics, astrophysics, geothermal physics
- Reactor monitoring for total power, isotopes, burnup
 - Provide a way to calibrate ex-core detectors;
 - Measure power spikes and scram within a few seconds;
 - Detect presence of covert reactors or used nuclear fuel storage;
 - Measure U/Pu ratio;
 - Measure age of fuel, especially used nuclear fuel;
 - Determine reactor burning or breeding (antineutrino from capture different);
 - Advance fuels: tag and track may not work as well;
 - Post accident monitoring;

Current Measurement Methods

- Traditional method uses inverse-beta-decay (IBD) to measure antineutrinos:
 \[\bar{\nu}_e + p \rightarrow e^+ + n \]
 - Cross-section of interaction (~10^{-42} barns), size tons-kilotons
 - Threshold of interaction 1.806 MeV
 - High maintenance, require photomultiplier tubes

- Necessitate the following characteristics:
 - NEED 1: An efficient detector providing high signal to noise quickly
 - NEED 2: Can provide detailed spectrum information
 - NEED 3: Ease of operation: low cost, low maintenance, portable

- ALTERNATIVE: coherent elastic neutrino-nucleus scatter (CNS)
Coherent elastic neutrino-nucleus scatter (CNS)

- A mechanism for the antineutrino to scatter of a nucleus, the electrons, or the nucleons
- Postulated and formulated in 1974 by Freedman

\[
\frac{d\sigma_{\text{CNS}}}{dT_R} = \frac{G_F^2 M}{2\pi} \left[(q_\nu + q_A)^2 + (q_\nu - q_A)^2 + \left(1 - \frac{T_R}{E_\nu} \right)^2 - (q_\nu^2 - q_A^2) \frac{M T_R}{E_\nu^2} \right]
\]

\(\sigma_{\text{CNS}}\) is the coherent neutrino scattering cross-section
\(G_F\) is the Fermi coupling constant
\(q_\nu\) and \(q_A\) vector and axial charges
\(N\) is the number of neutrons
\(T_R\) is the recoiled nucleus’ kinetic energy
\(M\) is the mass of the detector nucleus
\(E_\nu\) is the energy of the anti/neutrino
\(Z\) is the atomic number

- First measured by the COHERENT group in 2017
 - Measurements performed for high energy neutrinos (not completely coherent w.r.t. nucleus)
 - At lower energies as in from nuclear reactor (<10 MeV)
General Procedure

1. Determine the antineutrino flux for reactor of interest
2. Calculate the CNS cross-sections for the detectors of choice
3. Convolve the antineutrino flux and CNS cross-sections to determine reaction rates
1. Determine the antineutrino flux for reactor of interest (10 m from 1-MW NE&SC core-Texas A&M)
 • Ab-initio or the summation method, for a given fissile isotope determine all fission products that decay by β-decay, obtain the β-decay spectrum, sum-up and subtract from β_max energy (our choice)
 \[
 \rho(E_\nu) = \sum_i CY_i \sum BR_i P_i(E_\nu)
 \]
 \(i\) is fission product index, \(CY_i\) is cumulative yield if isotope, \(BR_i\) is branching ratio, \(P(E_\nu)\) is the neutrino energy distribution

 \[
 P_i(E_\nu)dE_\nu = F(Z, E_\nu) \left[(E_{\beta max} - E_\nu)^2 - m_0^2c^4 \right]^{1/2} \\
 \times \frac{E_\nu^2(E_{\beta max} - E_\nu)dE_\nu}{F_i} \times F(\alpha)(E_\nu)
 \]

 \(F(Z, E_\nu)\) is the fermi function, \(F(\alpha)(E_\nu)\) is a correction factor for spin-parity-forbidden/allowed states

- 545 fission products for \(^{235}\text{U}\)
- 586 fission products for \(^{238}\text{U}\)
- 568 fission products for \(^{239}\text{Pu}\)
- 605 fission products for \(^{241}\text{Pu}\)

Prasad et al. at WANDA 2021
The differential cross-section as a function of nucleus recoil energy is integrated up to

\[T_{R}^{Max} = \frac{2E_{\nu}^2}{M + 2E_{\nu}} \]

The resulting cross-section for Ge and Si indicate germanium is more efficient over all energies.

Detector threshold of 20 eV nuclear recoil

<table>
<thead>
<tr>
<th>Detector Technology</th>
<th>Flux-weighted cross-section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germanium CNS</td>
<td>4×10^{-4} pb</td>
</tr>
<tr>
<td>Silicon CNS</td>
<td>3.2×10^{-5} pb</td>
</tr>
<tr>
<td>IBD</td>
<td>1.88×10^{-6} pb</td>
</tr>
</tbody>
</table>
Reaction Rates in the Detector

\[R(E_\nu) = N\sigma_{CNS}(E_\nu)\phi(E_\nu) \]

- At 20 eV nuclear recoil, minimum detectable neutrino energy on Si \(\sim 0.5\) MeV, on Ge \(\sim 0.8\) MeV (100 kg detector at 10 m)
 - \(\sim 43.4\) events/day in Ge and \(\sim 7.8\) events/day in Si
 - Antineutrinos missed nearly 32% in Ge and 19% in Si
- At 100 eV nuclear recoil, minimum detectable neutrino energy on silicon \(\sim 1.14\) MeV, on germanium \(\sim 1.84\) MeV
- The current inverse-beta-decay (IBD) threshold at \(\sim 1.8\) MeV
 - \(\sim 2.1\) events/day with water based and \(\sim 1.8\) events/day with organic scintillation based IBD detectors
 - Antineutrinos missed nearly 50%

Prasad et al. at WANDA 2021
MINER experiments plan

1. 2-10 m proximity to core (rate enhancement)
2. Moveable Core tests short baseline oscillation
3. 4 kg (max=30) detector payload
Summary and Future Plans

• Shown detector’s response as a function antineutrino energies for CNS semiconductors (below 1.8 MeV)
 • Ge more efficient than Si detectors
 • Si provides lower threshold for detection
 • Both semiconductors can be developed to provide more efficient and smaller detectors (possibly cheaper)
• Formulate detector response beyond reaction rates
• Perform analysis for different cases: fuel cycles, burnup history, power levels
• Perform spectrum reconstruction of antineutrino energies from the detector response function above
Measuring the Antineutrino Spectrum Below 1.8 MeV

Presenter: Shikha Prasad
Contributors: Wei Eng Ang, Rupak Mahapatra

February 1st 2021
\[F_a(E_v) = C \left(1 - \frac{E_v}{E_{\text{max}}}\right)^n \]

\[F(Z, W) \approx a \frac{W}{p} + \left[\frac{c}{1 + (d/p^2)} \right] \]

where \(a = 2\pi\alpha Z \), \(C = b - a \), \(b = a/(1 - e^{-a}) \), and \(d = \left(\frac{1}{2}\right)(b - 1) \)