### Nuclear Data in a Nutshell

#### Lee Bernstein January 22, 2021 UC-Berkeley Dept. of Nuclear Engineering Lawrence Berkeley National Laboratory



#### Let's start by considering "The Data Dilemma"

- If you don't have data, you get to make it up
- If you have one data set, it must be correct
- If you have two data sets, they are both wrong
  - And everyone is just going to pick their favorite
- When you have many data sets, you get to make it up again



It's not enough to make the most accurate measurement since it will be viewed within the historical context





### What happens when you ignore hidden compensating errors in nuclear data: The Maple reactor story

- The Maple reactors were dedicated medical isotope production reactors fueled with LEU using HEU targets
- AECL discovered that the reactor had a positive power coefficient of reactivity in June 2003.
- This behavior was deemed by the Canadian Nuclear Safety Commission to be a safety issue.
- AECL engaged the services of organizations such as BNL, INL, and INVAP, from 2005 to 2008 to identify the cause of the discrepancy.
- The cause was never determined and in May 2008,
- AECL discontinued the project.
- Following this decision, AECL was served with a <u>\$1.6</u> billion lawsuit against for breach of contract.

You run the risk of making bad decisions if you don't have trustworthy data







### There are a VERY large body of complementary and/or competing nuclear databases\*

| Database                                                                                | Comments                                                       | Туре        | Website                                        |  |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|------------------------------------------------|--|--|
| Nuclear Science References (NSR)                                                        | List of published nuclear data<br>articles                     | Compilation | https://www.nndc.bnl.gov/nsr/                  |  |  |
| Experimental Nuclear Reaction Data<br>(EXFOR)                                           | Compiled reaction data                                         | Compilation | https://www.nndc.bnl.gov/exfor/exfor.htm       |  |  |
| Experimental Unevaluated Nuclear Data<br>List (XUNDL)                                   | Compiled structure data                                        | Compilation | https://www.nndc.bnl.gov/ensdf/ensdf/xundl.jsp |  |  |
| Evaluated Nuclear Data File (ENDF)                                                      | Evaluated reaction data                                        | Evaluated   | https://www.nndc.bnl.gov/exfor/endf00.jsp      |  |  |
| Evaluated Nuclear Structure Data File<br>(ENSDF)                                        | Evaluated structure and decay<br>data                          | Evaluated   | https://www.nndc.bnl.gov/ensdf/                |  |  |
| Reference Input Parameter Library<br>(RIPL)                                             | Data for nuclear model<br>calculations                         | Derived     | https://www-nds.iaea.org/RIPL-3/               |  |  |
| Atlas of Neutron Resonances                                                             | Evaluated neutron data                                         | Evaluated   | None                                           |  |  |
| Atlas of Gamma-Ray Spectra from the<br>Inelastic Scattering of Reactor Fast<br>Neutrons | Compiled reaction data                                         | Compilation | http://nucleardata.berkeley.edu                |  |  |
| Medical Internal Radiation Dose (MIRD)                                                  | Derived decay data                                             | Derived     | https://www.nndc.bnl.gov/mird/                 |  |  |
| Nuclear Structure and Decay Data<br>(NUDAT)                                             | Graphical interface for<br>structure and decay data            | Derived     | https://www.nndc.bnl.gov/nudat2/               |  |  |
| Evaluated Gamma-ray Activation File<br>(EGAF)                                           | Evaluated thermal capture<br>γ-ray data                        | Evaluated   | https://www-nds.iaea.org/pgaa/egaf.html        |  |  |
| Java-Based Nuclear Data Information<br>System (JANIS)                                   | Graphical interface for reaction,<br>structure, and decay data | Derived     | https://www.oecd-nea.org/janis/                |  |  |
| Joint Evaluated Fission and Fusion<br>Nuclear Data Library (JEFF)                       | Evaluated reaction data                                        | Evaluated   | https://www.oecd-nea.org/dbdata/jeff/jeff33/   |  |  |
| Japanese Evaluated Nuclear Data Library<br>(JENDL)                                      | Evaluated reaction data                                        | Evaluated   | https://wwwndc.jaea.go.jp/jendl/j40/j40.html   |  |  |
| Computer Index of Nuclear Reaction<br>Data (CINDA)                                      | Compiled neutron reaction data                                 | Compilation | https://www.nndc.bnl.gov/exfor/cinda.htm       |  |  |



Of



## There are a VERY large body of complementary and/or competing nuclear databases (continued)\*

| Database                                                                  | Comments                                                                                                               | Туре        | Website                                                                                            |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------|
| Chinese Evaluated Nuclear Data Library<br>(CENDL)                         | Evaluated reaction data                                                                                                | Evaluated   | None                                                                                               |
| Russian File of Evaluated Neutron Data<br>(ROSFOND)                       | Evaluated reaction data                                                                                                | Evaluated   | https://www.ippe.ru/reactors/reactor-constants-<br>datacenter/abbn-reactor-group-constant-database |
| European Activation File (EAF)                                            | Derived decay data                                                                                                     | Evaluated   | https://www.oecd-nea.org/dbforms/data/eva/evatapes/<br>eaf_2010/                                   |
| International Reactor Dosimetry File<br>(IRDFF)                           | Evaluated neutron reaction data<br>with uncertainties                                                                  | Evaluated   | https://www.oecd-nea.org/dbforms/data/eva/evatapes/<br>irdf_2002/                                  |
| International Criticality Safety Benchmark<br>Evaluation Project (ICSBEP) | Compiled critical and<br>subcritical assembly data                                                                     | Compilation | https://www.oecd-nea.org/science/wpncs/icsbep/<br>handbook.html                                    |
| TALYS Evaluated Nuclear Data Library<br>(TENDL)                           | Evaluated reaction data                                                                                                | Evaluated   | https://tendl.web.psi.ch/tendl_2017/tendl2017.html                                                 |
| Russian Evaluated Neutron Data Library<br>(BROND)                         | Evaluated reaction data                                                                                                | Evaluated   | https://www.oecd-nea.org/dbdata/data/nds_eval_libs.htm                                             |
| Fusion Evaluated Nuclear Data Library<br>(FENDL)                          | Evaluated reaction data                                                                                                | Evaluated   | https://www-nds.iaea.org/fendl/                                                                    |
| International Reactor Physics Experiment<br>Evaluation (IRPhE) Project    | More complex experiments<br>than the ICSBEP but still<br>useful for validation                                         | Compilation | https://www.oecd-nea.org/science/wprs/irphe                                                        |
| Shielding Integral Benchmark Archive and<br>Database (SINBAD)             | Database of LLNL pulsed<br>spheres and other<br>shielding/transmission<br>experiments                                  | Compilation | https://www.oecd-nea.org/science/wprs/shielding                                                    |
| Measured Isotopic Concentrations of<br>Spent Nuclear Fuel (SFCOMPO)       | Database of measured isotopic<br>concentrations of spent<br>nuclear fuel with operational<br>histories and design data | Compilation | https://www.oecd-nea.org/sfcompo                                                                   |
| Atomic Mass Evaluation and<br>NUBASE2016                                  | Atomic masses and decay properties                                                                                     | Evaluation  | http://amdc.impcas.ac.cn/web/masseval.html<br>http://amdc.impcas.ac.cn/web/nubase_en.html          |





#### The Nuclear Data Pipeline in a Nutshell

Step #1: Measurements published

**Step #2: Results are** *compiled* 

Step #3: Data are *evaluated* 

**ENDF** Reactions (mostly cross sections)

#### **ENSDF** (n.fy Much of this sort of data Low-lying Structure evaluation effo (Levels, gammas...)

#### A lot connections exist, but many aren't obvious to the casual user

 $\rho(E), E(E_{\gamma})$ 



### The Nuclear Data "Pipeline" in most of its gory detail...





There's even more detail, but I don't want you screaming and running in fear...



## The main nuclear structure database is the Evaluated Nuclear Structure Data File (ENSDF)

- Data from select peer-reviewed journals are compiled into the XUNDL (Unevaluated Nuclear Data List) database.
  - For many journals this is now done as a part of the review process
- The data from XUNDL are reviewed by expert evaluators on nuclide-by-nuclide basis or as part of an A-chain.
  - Data from decay and reactions *etc.* are combined to produce a list of recommended values called the *Adopted Levels and Gammas* file.
  - Vast majority of data is from  $\gamma$ -ray spectroscopy.
  - Only discrete levels are included (incomplete over  $E_x \approx 0.5 2.0 \text{ MeV}$ ).
  - The ENSDF format is non-numeric with fixed length 80-character records and numerous text comments.
  - Results are published in *Nuclear Data Sheets* or *Nuclear Physics A* for nuclides with A<20.</li>
  - The amount of data can vary dramatically from one nuclide to another.



#### The <sup>235</sup>U ENSDF adopted levels file

| <sup>15</sup> 2U <sub>143</sub> -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | From ENSDF - Evaluated February 2014                                                                                                                         | $^{235}_{92}U_{143}$ -1 | E(level)"                   | <u>J</u> <sup>π</sup> • | T1/2                            | XREF           | Comments                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|-------------------------|---------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 399729 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64<br>                                                                                                                                                       | 19700 6,600<br>         | $0.0^{a}$                   | 7/2-                    | 7.04×10 <sup>8</sup> y <i>I</i> | ABCD FGHIJK MN | $\%\alpha$ =100; %SF=7×10 <sup>-9</sup> 2<br>% <sup>20</sup> Ne=8×10 <sup>-10</sup> 4; % <sup>25</sup> Ne≈8×10 <sup>-10</sup>                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Adopted Levels, Gammas                                                                                                                                       |                         |                             |                         |                                 |                | % <sup>28</sup> Mg=8×10 <sup>-10</sup>                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                         |                             |                         |                                 |                | $\mu = -0.38 \ 3 \ (1983Ni08, 2011StZZ)$<br>$O = +4.936 \ 6 \ (1984Zu02, 2011StZZ)$                                                                                    |
| Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | History<br>Citation Literature Cutoff Dec                                                                                                                    |                         |                             |                         |                                 |                | $\mu(^{233}U)/\mu(^{235}U) = -1.5604$ 14, consistent with 5/2[633] and 7/2[743]                                                                                        |
| Endl Excl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hustion E Browne L K Tuli NDS 122 205 (2014) LEeb 2014                                                                                                       |                         |                             |                         |                                 |                | configurations for <sup>233</sup> U and <sup>235</sup> U ground states, respectively                                                                                   |
| Puil Eva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nuation E. Blowne, J. R. 101 (403 122, 205 (2014)) 1-1-0-2014                                                                                                |                         |                             |                         |                                 |                | (1990G828).                                                                                                                                                            |
| $\xi(\beta^{-}) = -124.0 \ 9; \ S(n) = 5297.5 \ 2; \ S(n$ | $(p)=6709 4; Q(\alpha)=4678.2 7 2012Wa38$                                                                                                                    |                         |                             |                         |                                 |                | 1957Bl66, 1958Da21. Parity and configuration assignments are                                                                                                           |
| additional information 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                         |                             |                         |                                 |                | from $\mu$ , Q.                                                                                                                                                        |
| <sup>35</sup> U(n,n'): E<20 MeV (2013He11,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2005Ha23); E=0.14-15.2 MeV (2010Ha06); Others: 2009Ch24, 2009Mu14, 200                                                                                       | 4Du20.                  |                             |                         |                                 |                | Others: 1998El02, 1992An17, 1997Be64.                                                                                                                                  |
| <sup>35</sup> U(n,n'γ): 2013Ke02, 2012LeZZ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2008HuZW,                                                                                                                                                    |                         |                             |                         |                                 |                | T <sub>1/2</sub> : From 2004Sc03, weighted average (CHI**/n-1=1.006) of                                                                                                |
| $^{25}U(\alpha, \alpha')$ ; 2011Bull.<br>$^{35}U(n,n)$ ; E= 1-200 MeV, calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d = (2008Li05)                                                                                                                                               |                         |                             |                         |                                 |                | 6.97×10° y 24 (1939Ni03. Mass spectrometry. Measured Pb/U<br>ratios in uranium ores): 7.11×10 <sup>8</sup> y 14 (1950Kn17. Specific                                    |
| <sup>35</sup> U(SF): 2013Ka26, 2012Fa12, 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12Ha06, 2005Re16. Measured $\sigma$ using surrogate reaction (2012Hu01); calculate                                                                           | d fission barrier       |                             |                         |                                 |                | activity method.); 6.77×10 <sup>8</sup> y 21 (1951Sa30, Measured                                                                                                       |
| and half-life (2012Ro34,2007Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 508).                                                                                                                                                        |                         |                             |                         |                                 |                | <sup>235</sup> U/ <sup>238</sup> U) activity ratios.); 7.12×10 <sup>8</sup> y 16 (1952Fl20. Specific                                                                   |
| <sup>9</sup> U(n,4n): 2012Br11.<br><sup>35</sup> U(n E) E=400 keV (2012B-777)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E=2.8 MeV (2011Me07): E=0.01 2030 MeV celepted at (2000Ce05)                                                                                                 |                         |                             |                         |                                 |                | activity method.); 7.64×10° y 43 (1957C116. Measured<br>235[1/238]) activity ratios.); 6.95×10 <sup>8</sup> y 16 (1957W):20                                            |
| 35U(12C, 12C) E=30-1000 MeV/nuc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cleon; <sup>235</sup> U( <sup>20</sup> C, <sup>20</sup> C) E=30-1000 MeV/nucleon (2008Li05).                                                                 |                         |                             |                         |                                 |                | Measured <sup>235</sup> U/ <sup>234</sup> U activity ratios.); 7.12×10 <sup>8</sup> y 9 (1965Wh05.                                                                     |
| luster decay:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                         |                             |                         |                                 |                | Specific activity method); 7.06×108 y 8 (1966Ba58), Mass                                                                                                               |
| <sup>35</sup> U( <sup>29</sup> Mg): calculated half-life (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113Ta07).                                                                                                                                                    |                         |                             |                         |                                 |                | spectrometry. 7.04×10° y I (1971Ja07. Specific activity method);<br>6.79×10 <sup>8</sup> y I3 (1974De19. Measured <sup>235</sup> U/ <sup>238</sup> U a patienty        |
| <sup>35</sup> U( <sup>24</sup> Ne), <sup>235</sup> U( <sup>25</sup> Ne), <sup>235</sup> U( <sup>28</sup> Me)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | calculated half-life (20132d02). calculated half-life (2012Ba35,2012Ku29). Others: <sup>235</sup> U( <sup>24</sup> Ne). <sup>235</sup> U( <sup>25</sup> Ne). | 2010Ni13.               |                             |                         |                                 |                | ratios); Other value: 7.04×10 <sup>8</sup> y (Value recommended in                                                                                                     |
| 2004Ba64.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                         |                             |                         |                                 |                | 2000Ho27.) Others: 1965De06, 1971Ar48, 1974Ja17, 1993Bu10.                                                                                                             |
| <sup>35</sup> U( <sup>20</sup> O), <sup>235</sup> U( <sup>22-26</sup> Ne), <sup>235</sup> U( <sup>28-</sup><br>35U( <sup>24</sup> Me)), coloridade to 16 VC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>50</sup> Mg) calculated $Q(\beta^{-})$ value, half-life (2012Sa31).                                                                                     |                         |                             |                         |                                 |                | $T_{1/2}(SF) = 1.0 \times 10^{17}$ y 5, value recommended in 2000Ho27 from<br>$T_{1/2}(SF) = 9.8 \times 10^{18}$ y 28 (1981Vo02): $T_{1/2}(SF) > 1.8 \times 10^{18}$ y |
| <sup>35</sup> U( <sup>28</sup> Mg): calculated half-life, iso<br><sup>35</sup> U( <sup>28</sup> Mg): 2010Si12: calculated h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | shope shift, $Q(\beta^{-})$ value (2005Bh02).                                                                                                                |                         |                             |                         |                                 |                | (1974GrZA); T <sub>1/2</sub> (SF)= 0.35×10 <sup>18</sup> y 9 (1966Al23); T <sub>1/2</sub> (SF)=                                                                        |
| 35U(25Ne), 235U(29Mg): calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | half-life (2011Sh13).                                                                                                                                        |                         |                             |                         |                                 |                | $0.18 \times 10^{18}$ y (1952Se67).                                                                                                                                    |
| <sup>35</sup> U( <sup>26</sup> Ne), <sup>235</sup> U( <sup>29</sup> Mg): 2005Ku32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2, 2005Ku04.                                                                                                                                                 |                         |                             |                         |                                 |                | $\%^{-5}$ Ne( $\%\alpha = 8 \times 10^{-14}$ 4 (19891r11,1991Bo20).<br><sup>24</sup> Ne emission (1997Ka11).                                                           |
| $^{32}$ Th( $^{16}$ O, $^{13}$ C), $^{232}$ Th( $^{19}$ F, $^{16}$ N) (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00Si04): Measured excitation functions.                                                                                                                      |                         |                             |                         |                                 |                | T <sub>1/2</sub> ( <sup>25</sup> Ne)≈9×10 <sup>19</sup> yr. Other: 1997Tr17.                                                                                           |
| <sup>35</sup> U(SF): calculated fission harrier:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and half-life (2012Ro34 2012Pa40 2011Hu06).                                                                                                                  |                         |                             |                         |                                 |                | $T_{1/2}(^{28}Mg)=8.8\times10^{20}$ yr (1998Ro11,1997Ro24); other value:                                                                                               |
| <sup>35</sup> U isotopic abundance in natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uranium: 2012Qi02, 2011Be53, 2008We01.                                                                                                                       |                         |                             |                         |                                 |                | $>9\times10^{20}$ (1997MiZP).<br>$O(^{233}U)O(^{235}U)=0.975(3.(1990Ge78))$                                                                                            |
| suclear Structure: Level density par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rameters: 2006Fr21. Others: 2011Mu06, 2010Ni02, 2010Qu01, 2010To07, 2006                                                                                     | Sa35.                   | 0.0760 + 4                  | 1/2+                    | ≈26 min                         | A CD F L       | %IT=100                                                                                                                                                                |
| Quadrupole moment: 2005Ko18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |                         |                             |                         |                                 |                | T1/2: depends on chemical environment                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>235</sup> U Levels                                                                                                                                      |                         |                             |                         |                                 |                | (1966Ma20,1968Ne04,1974Ne09,1971Ar48,1972Ne12). $T_{1/2}=25.7$<br>min 4 in LASER produced plasma (1979Iz02).                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                         |                             |                         |                                 |                | T1/2: T1/2=230 min. 235mU placed in a silver matrix. Drastic                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cross Reference (XREF) Flags                                                                                                                                 |                         |                             |                         |                                 |                | change in T <sub>1/2</sub> may be due to a special electromagnetic field                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                         |                             |                         |                                 |                | Ultra-violet laser excitation of <sup>235</sup> U (1992Bo26).                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A $^{235}$ Pa $\beta^{-1}$ decay F $^{234}$ U(n, $\gamma$ ) E=th K $^{236}$ U(d,t)<br>R $^{235}$ Nn e decay C $^{234}$ U(d, $\gamma$ ) t $^{236}$ U(d,t)     |                         |                             |                         |                                 |                | $J^{\pi}$ : favored $\alpha$ decay from $1/2^{+239}$ Pu.                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C $^{239}$ Pu $\alpha$ decay H $^{235}$ U(n,n') M Muonic atom                                                                                                |                         | 13.0339 <sup>TC</sup> 21    | 3/2+                    | 0.50 ns 3                       | A CD FG K      | $T_{1/2}$ : from <sup>239</sup> Pu $\alpha$ decay (1970Ho02).                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D Coulomb excitation I $^{235}U(n,n'\gamma)$ N $^{235}U(\gamma,\gamma')$                                                                                     |                         | 46.103 8                    | 9/2                     | ≈14 ps                          | CD F IJ M      | T <sub>1/2</sub> : from B(E2)=6.7, average of B(E2)=4.834 16 in muonic atom,<br>B(E2)=7.4 7 in Coulomb excitation (1957Ne07), and B(E2)=8.0                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E <sup>255</sup> U(t,p) J <sup>255</sup> U(d,d')                                                                                                             |                         |                             |                         |                                 |                | 12 in (d,d'). The approximate value of the half-life is due to the                                                                                                     |
| $E(level)^{#}$ J <sup>#</sup> $T_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XREF Comments                                                                                                                                                |                         | SI GOGED II                 | 50+                     | 101 - 5                         | A CD FCH P     | large uncertainty in the E2 $\gamma$ -ray mixing ratio ( $\delta$ =0.14 14).                                                                                           |
| 0.04 7/2- 7.04×108 y I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ABCD FGHIJK MN %α=100; %SF=7×10 <sup>-9</sup> 2                                                                                                              |                         | 81.724 <sup>c</sup> 4       | 7/2+                    | 191 ps 3                        | A CD FG KL     | $1_{1/2}$ : from Pu $\alpha$ decay (1970fr002,1970fr02Z).                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\%^{20}$ Ne=8×10 <sup>-10</sup> 4; $\%^{25}$ Ne≈8×10 <sup>-10</sup>                                                                                         |                         | 103.903                     | 11/2-                   | 33 ps 5                         | CD GH JKLM     | T1/2: from B(E2)=1.18 16 (1957Ne07) and B(E2)=1.19 4 in muonic                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mu = -0.383$ (1983Ni08.2011StZZ)                                                                                                                           |                         | in another                  | ent                     |                                 |                | atom (1984Zu02). Other value: B(E2)=2.2 3, in $(d,d')$ .                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q=+4.936 6 (1984Zu02,2011StZZ)                                                                                                                               |                         | 129.2995 10<br>150 356 b 16 | 9/2*                    |                                 | A CD FG I KI   | J": $\gamma$ -ray de-excitation (E1 to 7/2 <sup>-</sup> , M1 to 3/2 <sup>+</sup> ).                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mu(^{233}\text{U})/\mu(^{235}\text{U}) = -1.5604$ 14, consistent with 5/2[633]                                                                             | and 7/2[743]            | 171 358 6 5                 | 7/2+                    |                                 | CD F KI        |                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | configurations for 200 and 200 ground states, respectively (1990Ga28).                                                                                       | cuvely                  | 171.464** 13                | 13/2-                   | 21.9 ps 13                      | CDGJM          | T <sub>1/2</sub> : From B(E2)=2.12 5 and $\delta$ in muonic atom.                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                         | 197.087 <sup>†</sup> c 15   | 11/2+                   |                                 | CD G K         |                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              | reenshot                |                             |                         |                                 |                | Correspondent                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Continued on next page (footnotes at end of table)                                                                                                           |                         | -                           |                         |                                 | Continued of   | on next page (footnotes at end of table) SCIEENSNOT                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                            |                         |                             |                         |                                 |                |                                                                                                                                                                        |

NERGY

Ξ

Science

### Nuclear structure data isn't evenly spread out over the chart of nuclides





### And heavy-ion fusion reactions only populate states near the yrast lines (maximum *J* per unit *E*)



# Another source of information is the decay of fission fragments



### The ENSDF philosophy

≤ 1 yr since cutoff
2 yr since cutoff
3 yr since cutoff
4 yr since cutoff
5 yr since cutoff
6 yr since cutoff
7 yr since cutoff
8 yr since cutoff
9 yr since cutoff
10 yr since cutoff
≥ 11 yr since cutoff

S. DEPARTMENT

Nuclear structure evaluation is a pain-staking process with full-time evaluators completing 1-2 A-chains per year

The goal of ENSDF is to provide an objective representation of all available knowledge about *known* nuclear states

There is no attempt to "fill in" missing information for highly-excited states, unknown  $J^{\pi}$ , nuclei which have not been formed etc.

Accuracy and consistency are most important

# ENSDF evolves *slowly* on nuclei near stability – Example: <sup>56</sup>Fe circa 1974 vs 2009

|                                     | a, 74Ti]                   |                |                                       |                              |                               |                             |
|-------------------------------------|----------------------------|----------------|---------------------------------------|------------------------------|-------------------------------|-----------------------------|
| Ei                                  | $E_i^a$                    | $J_i^{\pi}$    | Eγ                                    | ۲                            | E <sub>į</sub>                | J <sub>j</sub> <sup>π</sup> |
| 846.79<br>2085.1(3)<br>2657.5(2)    | 846.8<br>2085.1<br>2657.6  | 2+<br>4+<br>2+ | 846.78<br>1238.3<br>2658.3<br>1810.5  | $100 \\ 10.5 \\ 0.14 \\ 6.0$ | 0<br>846.8<br>0               | 0+<br>2+<br>0+              |
| 2941.4(2)<br>2959.7(2)              | 2941.7<br>2960.0           | 0+<br>2+       | 2094.6<br>2959.6<br>2112.9            | $\frac{1.08}{3.2}$           | 846.8<br>0<br>846.8           | 2+<br>2+<br>0+<br>2+        |
| 3120.0(2)<br>3122.9(3)<br>3370.0(2) | 3120.0<br>3123.0<br>3370.2 | 1+<br>4+<br>2+ | 2273.2<br>1037.85<br>3369.2<br>2523.2 | 2.03<br>2.15<br>0.24<br>1.28 | 846.8<br>2085.1<br>0<br>846.8 | 2+<br>4+<br>0+<br>2+        |
| 3388 3 (4)<br>3445.37               | 3388.1<br>3445.4           | 6+<br>3+       | 1303.9<br>9508.59<br>1359.9           | 0.64<br>2.6<br>0.40          | 2085.1<br>846.8<br>2085.1     | 4+<br>2+<br>4+              |
| 3602.0(3)<br>3606.9(3)<br>3756.2(6) | 3601.9<br>3607.0<br>3755   | 2+<br>0+<br>6+ | 3601.9<br>2760.0<br>1671.1            | 1.13<br>1.5<br>1.24<br>0.32  | 0<br>0<br>846.8<br>2085.1     | 0+<br>0+<br>2+<br>4+        |

 $E_{\gamma}$  changed by < 0.1% But...

 $\underline{E_i} < 3756 \text{ keV}$ 

• c 1970 – 18 γ-rays

.S. DEPARTMENT OF

• 2009 – 28 γ-rays •

 $\underline{E}_i < 4539 \text{ keV}$ 

- c 1970 36 γ-rays
  - $2009 96 \gamma$ -rays

|   | E <sub>i</sub> (level) | $J_i^{\pi}$ | Eγ <sup>†</sup>           | Ιγ <sup>C</sup>      | Ef              | $J_f^{\pi}$           |
|---|------------------------|-------------|---------------------------|----------------------|-----------------|-----------------------|
|   | 846.7778               | 2+          | 846.7638 19               | 100 <sup>§</sup>     | 0.0             | 0+                    |
| I | 2085.1045              | 4+          | 1238.2736 22              | 1008 2               | 846.7778        | 2+                    |
|   | 2657.5894              | 2+          | 1810.757 <sup>‡</sup> 4   | 100.0 <sup>§</sup> 3 | 846.7778        | 2+                    |
|   |                        |             | 2657.527 <sup>‡</sup> 4   | 3.1 <sup>§</sup> 3   | 0.0             | 0+                    |
|   | 2941.50                | 0+          | 2094.9 <i>3</i><br>(2941) | 100                  | 846.7778<br>0.0 | $\frac{2^{+}}{0^{+}}$ |
|   | 2959.972               | 2+          | 2113.135 <sup>‡</sup> 5   | 100 <sup>§</sup> 2   | 846.7778        | 2+                    |
|   |                        |             | 2959.92 <sup>§</sup> 1    | 2.16 8               | 0.0             | 0+                    |
| I | 3076.2                 | (3-)        | 991.51 <sup>b</sup> 3     | 47 <sup>b</sup> 13   | 2085.1045       | 4+                    |
| I |                        |             | 2229 <sup>b</sup>         | 100 <sup>b</sup> 13  | 846.7778        | 2+                    |
| I | 3120.11                | (1+)        | 462 <sup>b</sup>          | <1.05 <sup>b</sup>   | 2657.5894       | 2+                    |
| I |                        |             | 2273.2 <sup>b</sup>       | 100.0 <sup>b</sup> 7 | 846.7778        | 2+                    |
| I |                        |             | 3120 <sup>b</sup>         | 4.82 <sup>b</sup> 7  | 0.0             | 0+                    |
| I | 3122.970               | 4+          | 1037.8333 <sup>§</sup> 24 | 100.0 4              | 2085.1045       | 4+                    |
|   |                        |             | 2276.131 + 4              | 0.85 5               | 846.7778        | 2+                    |
| I | 3369.95                | 2+          | 2523.06 <sup>§</sup> 5    | 100.0 <sup>§</sup> 9 | 846.7778        | 2+                    |
| I |                        |             | 3369.84 <sup>§</sup> 4    | 17 <sup>§</sup> 1    | 0.0             | 0+                    |
| I | 3388.55                | 6+          | 265.5# 2                  | 1.3# 3               | 3122.970        | 4+                    |
| I |                        |             | 1303.4 <sup>#</sup> 1     | 100 <sup>#</sup> 4   | 2085.1045       | 4+                    |
| I | 3445.348               | 3+          | 787.743 5                 | 1.83 2               | 2657.5894       | 2+                    |
| I |                        |             | 1360.212+ 4               | 25.63 8              | 2085.1045       | 4+                    |
|   |                        |             | 2598.500+ 4               | 100.0 <sup>‡</sup> 4 | 846.7778        | 2+                    |
|   | 3448.41                | 1+          | 790 <sup>b</sup>          | <0.7 <sup>b</sup>    | 2657.5894       | 2+                    |
| I |                        |             | 2601 <sup>b</sup>         | 33 <sup>b</sup> 3    | 846.7778        | 2+                    |
| I |                        |             | 3448 <sup>b</sup>         | 100 <sup>b</sup> 3   | 0.0             | 0+                    |
| ķ | 3600.21                | (1,2+)      | 942 <sup>b</sup>          | <2.4 <sup>b</sup>    | 2657.5894       | 2+                    |
|   |                        |             | 1515 <sup>b</sup>         | <2.4 <sup>b</sup>    | 2085.1045       | 4+                    |
|   |                        |             | 2753b                     | 20 <sup>b</sup> 4    | 846.7778        | 2+                    |
|   |                        | - C         | 2000                      | 1000 4               | 0.0             | 0+                    |

### Radioactive ion beam facilities offer the possibility of learning about nuclei far from the valley of stability



### Now, let's focus on the approach used on the reaction evaluation process

#### Let's say you want to design a reactor

- 1. First you put together a computer simulation
- 2. The simulation calls on nuclear data libraries to determine the right cross sections to use *But no one has measured one of the scattering cross sections as a function of angle, so...* No reactor <sup>(S)</sup> Of course we can't let that happen!!! *We need to fill in any gaps in reaction data with the best*

information possible - This is the ENDF approach

Completeness is most important





# The Evaluated Nuclear Data File (ENDF) contains "pre-digested" reaction data for use in applications

| MF | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 20                           |                                                                                                                                                                      |                                                                                                                                    |                                                                                 |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| 1  | General information D<br>Resonance parameter data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | -                            | Continuum                                                                                                                                                            |                                                                                                                                    | to L Fruittad                                                                   |  |  |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | e                            | Continuun                                                                                                                                                            | Contin                                                                                                                             | uum Particle                                                                    |  |  |
| 3  | Reaction cross sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50-90     |                              | 91                                                                                                                                                                   | 4                                                                                                                                  | n                                                                               |  |  |
| 4  | Angular distributions for emitted particles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 600-648   | (                            | 649                                                                                                                                                                  | 103                                                                                                                                | р                                                                               |  |  |
| 5  | Energy distributions for emitted particles 650-698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | (                            | 699                                                                                                                                                                  | 104                                                                                                                                | d                                                                               |  |  |
| 6  | Energy-angle distributions for emitted particles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 700-748   |                              | 749                                                                                                                                                                  | 105                                                                                                                                | t                                                                               |  |  |
| 7  | Thermal neutron scattering law data<br>Radioactivity and fission-product yield data<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>800-848<br>750-798<br>750-798<br>800-848<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>750-798<br>7 |           |                              | 799<br>840                                                                                                                                                           | 106                                                                                                                                | °He                                                                             |  |  |
| 8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | (                            | 549                                                                                                                                                                  | 107                                                                                                                                | α                                                                               |  |  |
| 9  | Multiplicities for radioactive nuclide production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                              |                                                                                                                                                                      |                                                                                                                                    | v                                                                               |  |  |
| 10 | Cross sections for radioactive nuclide production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MT<br>251 | Meaning                      | cosine of the                                                                                                                                                        | e angle for elastic scattering (laboratory                                                                                         |                                                                                 |  |  |
| 12 | Multiplicities for photon production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 201       | system). Derived files only. |                                                                                                                                                                      |                                                                                                                                    |                                                                                 |  |  |
| 13 | Cross sections for photon production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 252       | $\xi$ , average              | $\xi$ , average logarithmic energy decrement for elastic scattering.<br>Derived files only.<br>$\gamma$ , average of the square of the logarithmic energy decrement, |                                                                                                                                    |                                                                                 |  |  |
| 14 | Angular distributions for photon production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 253       | $\gamma$ , average           |                                                                                                                                                                      |                                                                                                                                    |                                                                                 |  |  |
| 15 | Energy distributions for photon production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                              |                                                                                                                                                                      | divided by $2 \times \xi$ . Derived files only.                                                                                    |                                                                                 |  |  |
| 23 | B Photo- or electro-atomic interaction cross sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                              |                                                                                                                                                                      | Energy release rate parameters (eV-barns) for the reaction, ob-<br>tained by subtracting 300 from this MT: e.g. 301 is total karma |                                                                                 |  |  |
| 26 | 6 Electro-atomic angle and energy distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                              |                                                                                                                                                                      | a for $(n,\alpha)$ ,                                                                                                               | etc. Derived files only.                                                        |  |  |
| 27 | 7 Atomic form factors or scattering functions for photo-atomic interactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                              |                                                                                                                                                                      | series used only in covariance files (MF=31-40) to give                                                                            |                                                                                 |  |  |
| 28 | Atomic relaxation data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                              | covariances<br>partials)                                                                                                                                             | s for groups o<br>See Chapter :                                                                                                    | f reactions considered together (lumped<br>30                                   |  |  |
| 30 | Data covariances obtained from parameter covariances and sensit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ivities   |                              | MT                                                                                                                                                                   | Meaning                                                                                                                            | Description                                                                     |  |  |
| 31 | Data covariances for nu(bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                              | 18                                                                                                                                                                   | (z,xf)                                                                                                                             | total prompt fission                                                            |  |  |
| 32 | Data covariances for resonance parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                              | 19                                                                                                                                                                   | (z,f)                                                                                                                              | first chance fission                                                            |  |  |
| 33 | Data covariances for reaction cross sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                              | 20                                                                                                                                                                   | (z,nt)<br>(z,2nf)                                                                                                                  | third chance fission                                                            |  |  |
| 34 | Data covariances for angular distributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                              | 38                                                                                                                                                                   | (z,3nf)                                                                                                                            | fourth chance fission                                                           |  |  |
| 35 | Data covariances for energy distributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                              | 452                                                                                                                                                                  | $\nu_T$                                                                                                                            | total number of neutrons per fission                                            |  |  |
| 39 | 9 Data covariances for radionuclide production yields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                              |                                                                                                                                                                      | $\frac{\nu_d}{\nu_n}$                                                                                                              | number of delayed neutrons per fission<br>number of prompt neutrons per fission |  |  |
| 40 | 0 Data covariances for radionuclide production cross sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                              | 458                                                                                                                                                                  | - p                                                                                                                                | components of energy release in fission                                         |  |  |
| 10 | Para covariances for radionacing production cross sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | -                            | 460                                                                                                                                                                  |                                                                                                                                    | delayed gammas from fission                                                     |  |  |



#### The reaction evaluation process

ENDF uses theory tuned to reproduce energy-differential and integral data



Reaction evaluation combines experiment with reaction theory and modeling to build a consistent picture

#### Thanks to Dave Brown (BNL/NNDC)



### The total reaction cross section is fixed creating a connection between different channels

Evaluation is performed for a given projectile+target+energy combination



Since  $\sigma_{total}$  is fixed for a given projectile + target system at a given energy there are *covariances* between reaction channels



#### Case study: the Jezebel critical assembly Which piece(s) of nuclear data is most important???





#### This problem is still present 7 years later



ENDF/B-VIII.0 vs. JEFF-3.3

` Neutrons from (n,f) are indistinguishable from (n,n')

.S. DEPARTMENT OF

ENER

Ofference Science



\*L.A.B. et al., Annu. Rev. Nucl. Part. Sci. 2019.69:109-136.