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The “human pipeline” vs machine learning and
automation - a dichotomy??

/\
 Machine learning helps us where human brain is 7Y
overwhelmed with wealth of data. Conversely, we Y é

(o o o

can integrate expert knowledge in these methods.

* \Where can we use automation to free the humans &
in the nuclear-data pipeline from repetitive work?? o
38 &

« Machine learning is an exciting subject area that

draws students/ Postdocs into nuclear data. b7
(Would not say “how to train young students for mi
this new paradigm”, but rather how can we learn

along with them-with the help of a data
scientist.) Students/ Postdocs publications in red
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Where in the nuclear-data pipeline can automation
and ML help us, a few examples:

Schnabel et al.,
Whewell etal., arxiv:/2009.00521 Arthur et al., ANE

NIMA 978, Tunin 133, 853 (2019).
164305 (2020). Correcti(g)ns Caliva, De Sousa Ribeiro,
,,_%1 et al., IEEE 2018.

Differential [ g m— — o,
Experimentj§ o= Processing General: Ad usted -
Evaluation Sensitivity Validationfj Purpose th)Jrarles Application
Nuclear Library
é I
a»

Theory

d +  Grechanuk et al.,’ ¢
W Lovell et al., ' gm
ao J. Comput. & aD :
J. Phys. G 47, Theor. Transport Integral Exp. Designed
« Neudecker et al., « Michaud, Kleedtke et al., ANS
NDS 167. 36 Transactions 121, 1035 (2019).
(2020). - Siefman et al., ANE 151 (2024):
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2 examples of LANL work to show how we transfer
knowledge to ML and that ML augments the pipeline

Schnabel et al.,
Whewell et al., grxiv:/2009.00521

NIMA 978, Tuni

unin
164305 (2020). Correcti(g)ns Caliva, De Sousa Ribeiro,
td’ et al., IEEE 2018.

Differential [ g m— — o,
Experimentj§ o= Processing General: Ad usted -
Evaluation Sensitivity Validationfj Purpose th)Jrarles Application
Nuclear Library
é I
aa»

Theory

d +  Grechanuk et al.," ¢
W Lovell et al., ' gm
ao J. Comput. & aD :
J. Phys. G 47, Theor. Transport Integral Exp. Designed
« Neudecker et al., « Michaud, Kleedtke et al., ANS
NDS 167, 36 Transactions 121, 1035 (2019).
(2020). - Siefman et al., ANE 151 (2024):
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Question: What features of differential exp. lead to

systematic discrepancies/ outliers in a database?
Why traditional techniques fail: the problem has 37 feature categories (100
values) for 24 measurements. ML can help us find trends in data, where

experts are overwhelmed with data. _
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Benefit: We are investigating the physics reasons related to

discrepancies between experiments or outliers. This can help us:

« Add missing unc/ reject data based on physics reasons — more reliable
nuclear data and uncertainties,

« Design experiments with features known to produce reliable exp. dataz s
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ML find physics expected features and unexpected

features related to outliers, brings value to the field.

Needle in
the haystack

Expert knowledge
fed to ML:

* Exp, data.

* Uncertainties

 Features
———— UNCLASSIFIED
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ML find physics expected features and unexpected

features related to outliers, brings value to the field.

Needle in Accepted
the haystack Data

Outliers

Flux

outliers PPAC

Expert knowledge

fed to ML:

- Exp, data. e

« Uncertainties T e
 Features
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ML find physics expected features and unexpected

features related to outliers, brings value to the field.

Needle in Accepted
the haystack Data

ML answer: Features
related to outliers.

Outliers

Find
features
common
to outliers

Flux Flux IOCH Various

Find
outliers PPAC
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Knowledge gained by ML can influence our
evaluated data. 7N

Fractional Change in GLLS with Penalties
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It is always up to the physicist to decide if the results are helpful.
ML augments but does not replace expert judgment.

CAVEAT: for this particular problem, we lack the
infrastructure to apply ML on a large scale.
Natural language processing and SG-50 might help.

UNCLASSIFIED Slide 9
« Los Alamos

NATIONAL LABORATORY
EEEEEEEE



Question: What nuclear data leads to bias between

simulated and experimental criticality?

Why traditional techniques fail: we simulate 1 criticality value with 1000s of
nuclear data. ML can help us find trends in data, where experts are
overwhelmed with data. S I w— — /-\
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Benefit: This information provides input on what nuclear data might need
to be revisited and corrected:

« Resolve timely issues in nuclear data — better data for applications,
 |dentify need for integral/ differential experiments or new evaluations.
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ML points towards potential issue in 1°F ENDF/B-
VIII.0 nuclear data relevant for validation exp.

Random Forest Results
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Several '°F nuclear data observables, over
a broad energy range, were highlighted as
important to predict bias. — Correlation
effects known from traditional validation
studies hamper ML because it is
inherent in the data!!!!
60Nj 115> 24 I ENDF/B-VIII.O -
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Conclusions:

» Can ML help our nuclear-data pipeline: Absolutely!!!

» MVL’s strength: find trends in large amounts of data where human brains are
overwhelmed. This information may be crucial to improve our nuclear data.

» HOWEVER: ML is no silver bullet. It is critical to feed it expert
knowledge and use physics intuition to interpret results. We need to:
» Develop infrastructure and tools to provide data in an easily readable
and unambiguously interpretable format (e.g., EXFOR format),
» Develop experimental data and theory to solve physics questions,
» Bring statisticians and nuclear-data experts together to correctly
interpret the results.

Bottom line: ML is a great tool. We need to use these algorithms
along with developing physics data, tools and infrastructure.
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