

Member of the US Nuclear Data Program

Novel Approach for Improving Nuclear Data for Antineutrino Spectra Predictions

FOA-LAB17-1763

Nuclear Physics

NA-22

WANDA2021 February 3, 2021

Introduction

applications

- detection of fissile materials from peaceful & military program
- remote safeguards and monitoring of operation status and power levels of reactors
- remote fission inventories in operating reactors

The New York Times

How to Spot a Nuclear Bomb Program? Look for Ghostly Particles

By Kenneth Chang

March 27, 2018

compelling physics

- physics beyond the Standard Model
- astrophysics supernovae core collapse & big bang nucleosynthesis
- neutrinoless double beta decay
- reactor anomaly & v oscillations

Nuclear Data Needs

International Atomic Energy Agency

Nuclear Data Services

Provided by the Nuclear Data Section

INDC(NDS)-0676 Distr. EN, ND

INDC International Nuclear Data Committee

~30 priority I and II nuclides

How to improve the needed ND?

- unique capabilities of CARIBU@ANL (DOE/SC/NP National User Facility) to produce high-purity beams of essentially all fission products
- state-of-the-art detector equipment Gammasphere

Gammasphere decay station

Advantages

- discrete & calorimetry γ-ray spectroscopy techniques within a single device
- high granularity & resolving power ($\Delta E\gamma = 2 \text{ keV}$, P/T~60% and $\epsilon_{\gamma} \sim 85\%$) ability to resolve week γ -ray cascades (10⁻⁵-10⁻⁶%)
- complete decay schemes angular correlations for transition multipolarities & Jπ assignments - end game in nuclear spectroscopy

HEART - HExagonal ARray for Triggering

 ✓ 6 EJ-204 plastic scint. & 12 SiPM
 ✓ ε_β~75% from β-γ singles & coin.

powerful γ-γ-β-t coincidence device

Current status

Completed two experimental campaigns:

- December 2018 aimed at transitional (weakly-deformed) ¹⁴⁴La, ^{146g,m}La, ¹⁴⁴Ba, ¹⁴⁶Ba, ¹⁴⁶Ce nuclei
- December 2019 aimed at welldeformed ^{102g,m}Nb, ^{104g,m}Nb, ¹⁰²Zr, ¹⁰⁴Zr, ¹⁰²Mo, ¹⁰⁴Mo nuclei
- Additional nuclear data were obtained by implementing the Canadian Penning Trap (CPT) & X array (5 Ge CLOVER detectors)

A new campaign was approved by the ATLAS Program Advisory Committee - delayed to later this year due to COVID-19

10% difference - purity of the source in previous experiments ¹⁴⁴Ba(11.7 s) -> ¹⁴⁴La(44 s)->¹⁴⁴Ce(285 d)

F.G. Kondev et al. EPJ 223 (2019) 01028

Deformed nuclei & isomers

spin-traps isomers resulting from the residual $\pi-v$ interactions

- very complex decay schemes with overlapping decay paths between the ground state and isomer
- unambiguously resolved the isomer from the ground state
- for the first time a comprehensive decay schemes for the ground state and the isomer were established

Recent publications

EPJ Web of Conferences 223, 01028 (2019)

Masses and Beta-decay Studies of Neutron-rich Nuclei using the X-array and Gammasphere

F.G. Kondev^{1,*}, D.J. Hartley², R. Orford^{1,3}, J.A. Clark^{1,4}, G. Savard^{1,5}, K. Auranen¹, A.D. Ayangeakaa^{1,2}, S. Bottoni^{1,6}, M.P. Carpenter¹, P. Copp¹, K. Hicks², C.R. Hoffman¹, R.V.F. Janssens⁷, B.P. Kay¹, T. Lauritsen¹, J. Li¹, S.T. Marley⁸, G.E. Morgan⁸, G. Mukherjee⁹, S. Nandi⁹, W. Reviol^{1,10}, J. Sethi^{1,11}, D. Seweryniak¹, S. Stolze¹, J. Wu¹, R. Yadav¹², and S. Zhu¹

PHYSICAL REVIEW C 101, 044301 (2020)

High-K, two-quasiparticle states in ¹⁶⁰Gd

D. J. Hartley ⁽⁰⁾, ¹ F. G. Kondev ⁽⁰⁾, ² G. Savard, ² J. A. Clark, ² A. D. Ayangeakaa, ^{2,*} S. Bottoni ⁽⁰⁾, ^{2,†} M. P. Carpenter, ² P. Copp, ^{2,3} K. Hicks, ¹ C. R. Hoffman, ² R. V. F. Janssens ⁽⁰⁾, ^{4,5} T. Lauritsen ⁽⁰⁾, ² R. Orford, ^{6,‡} J. Sethi, ^{2,7} and S. Zhu ⁽⁰⁾, ³

PHYSICAL REVIEW C 102, 011303(R) (2020)

Rapid Communications

Spin-trap isomers in deformed, odd-odd nuclei in the light rare-earth region near N = 98

R. Orford,^{1,2,*} F. G. Kondev[®],¹ G. Savard,^{1,3} J. A. Clark,^{1,4} W. S. Porter[®],^{1,†} D. Ray,^{1,4} F. Buchinger,² M. T. Burkey,^{1,3,‡} D. A. Gorelov[®],^{1,4} D. J. Hartley,⁵ J. W. Klimes[®],^{1,§} K. S. Sharma[®],⁴ A. A. Valverde[®],^{1,4} and X. L. Yan[®],^{1,6}

• data on ¹⁴⁴La are being prepared for publication in **PHYSICAL REVIEW C**

Conclusions & Outlook

- Gammasphere was converted into a powerful spectrometer for beta-decay studies of nuclei in the fission product region state-of-the-art decay spectroscopy with CARIBU beams
 - compelling physics structure of neutron-rich nuclei in the FP region - great discovery potential & detailed spectroscopy studies (resolving isomer decays)
 - valuable data for applications antineutrino spectra, fission product yields (presentations by K. Kolos & G. Savard), decay heat, safeguards and others
- first results on ¹⁴⁴La & ^{146,146m}La (^{144,146}Ba & ¹⁴⁶Ce) & deformed ^{102,102m,104,104m}Nb (^{102,104}Zr & ^{102,104}Mo) – resolved differences between previous studies & existing ND evaluations
- targeted experiments will continue during FY21-FY22 for other nuclei on the IAEA priority list

Collaborators

Argonne National Laboratory:

K. Auranen, M.P. Carpenter, J. Clark, P. Copp, F.G. Kondev, T. Lauritsen, J. Lee, W. Reviol, D. Santiago-Gonzalez, G. Savard, D. Seweryniak, S. Stolze, S. Zhu, J. Wu, M. Oberling, J. Anderson, R. Knaak, J. Roher & B. DiGiovane

S. Marley, E. Zganjar, G.E. Morgan, G. Willson

US Naval Academy: D.J. Hartley

VECC, Kolkata G. Mukharjee & S. Nandi

LOUISIANA STATE UNIVERSITY

