Improving the Nuclear Data on Fission Product Decays at CARIBU

Project Report at WANDA 2021
February 3, 2021

K. Kolos
kolos1@llnl.gov
Lawrence Livermore National Laboratory
Joint Proposal of LLNL and ANL

Funded by DOE/NNSA/DNN R&D (NA-22)

Kay Kolos
Research scientist
Project co-PI

Nick Scielzo
Research scientist/
Deputy Group Leader

Miguel Bencomo
Postdoc at LLNL

Wei Jia Ong
Lawrence Fellow

Argonne National Laboratory

Funded by DOE Office of Nuclear Physics/Nuclear Data

Guy Savard
ATLAS Director
Project co-PI

Filip Kondev
Principal Physicist

Mike Carpenter
Physicist- Experimental GL

Jason Clark
Physicist

Lawrence Livermore National Laboratory

LLNL-PRES-816784

Funded by DOE Office of Nuclear Physics/Nuclear Data

FY18-22
Our Collaborators

LLNL: M. A. Stoyer, A.P. Tonchev, K. J. Thomas, A. Gallant, M.T. Burkey

TAMU: V. E. Iacob, J.C. Hardy, D. Melconian, H.I. Park

ANL: P. Copp, M. Gott, J. Rohrer, D. Santiago-Gonzalez, A. Valverde

UC Irvine: A.M. Hennessy, E. Heckmaier, A.J. Shaka

UC Berkeley: B. Champine, T. Nagel, E.B. Norman, L. Bernstein

BNL: S. Zhu

UTK: K. Siegl

LBNL: R. Orford
The Goal of this Project is to Perform Detailed Studies of Key Fission-Product Decay Properties

Nuclear Data Impacts Understanding of Nuclear Events:

Fission-product isomer-to-g.s. ratios
Understanding of fission dynamics and angular momentum

Beta-delayed γ-ray branching ratios
Nuclear data for fission yields - impacts nuclear forensics

Measurements of short-lived fission products
- $^{134m}/^{134}\text{Sb}$ isomeric-to-ground state ratio measurement (X-Array)
- $^{102m}/^{102}\text{Nb}$ ion counting with Canadian Penning Trap (CPT)

Precision branching ratio of long-lived fission products of the importance to nuclear forensics
- ^{156}Eu precision decay measurement

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-life [days]</th>
<th>γ-ray energy [keV]</th>
<th>Current branching ratio [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{156}Eu</td>
<td>15.2</td>
<td>811.8</td>
<td>(9.7±0.8)</td>
</tr>
<tr>
<td>^{161}Tb</td>
<td>6.9</td>
<td>74.6</td>
<td>(10.2±0.5)</td>
</tr>
<tr>
<td>^{111}Ag</td>
<td>7.5</td>
<td>342.1</td>
<td>(6.68±0.33)</td>
</tr>
<tr>
<td>^{127}Sb</td>
<td>3.85</td>
<td>685.5</td>
<td>(36.8±2.0)</td>
</tr>
</tbody>
</table>

Uncertainties of the order of 5-10% need to be remeasured
CARIBU Opens Up Opportunities to Study Decays of Fission Products

CAlifornium Rare Isotope Breeder Upgrade

^{252}Cf spontaneous fission source

Mass-separated beams of any fission product with $t_{1/2} > 25$ ms

For more details on the CARIBU facility see Guy Savard’s talk today at 1:15 PM (EST)
We Measured Beta Decay Properties of $^{134/134m}$Sb: half-lives

- decay measured with sophisticated detector array (X-Array/SATURN)
- low energy 134Sb beam implanted on a mylar tape
- two tape cycles optimized to measure g.s. and iso state decays

134mSb 134Sb

(7-) 134mSb 134Sb

Energy: 0.279 MeV

Half-lives:
- $T_{1/2} = 9.87(11)$ s
- $T_{1/2} = 0.6744(53)$ s

B. Fogelberg et al. PRC 41, 5 (1990)
We Measured Beta Decay Properties of $^{134}/^{134m}$Sb: half-lives and isomeric-to-g.s. ratio

→ high-to-low spin ratio obtained from β build-up and decay for short and long tape cycle

→ Simple relation used for σ_h/σ_l ratio spin of initial fragments

[Madland and England, Nucl. Sci. and Eng. 64, 859 (1977)]

0.279 MeV

$^{(7^-)}$ 134mSb

0.279 MeV

$^{(0^-)}$ 134Sb

$\sigma_h/\sigma_l = 2.03 \pm 0.05$

→ The isomeric yield ratio can be used to understand the initial angular momentum of the fragments from the fissioning system.

We’re Working with ANL to Use An Ion Counting Method for Isomer-to-g.s. Ratio Measurements

- Identify isomer and ground state by mass, this method is independent on decay properties

Mass and energy:

\[E = mc^2 \]

\[E + \Delta E_{isomer} = (m + \Delta m_{isomer})c^2 \]

→ ions in the strong magnetic field of a Penning trap, where the frequency of the ion’s cyclotron motion depends on the mass of the ion

1st measurement of a larger campaign

Isomer-to-g.s. Ratio Measurement of 102,102mNb

→ ions ejected from the trap and transported to a position-sensitive detector

For more details on the CPT see Guy Savard’s talk today at 1:15 PM (EST)

Preliminary result:

g.s.-to-isomer = 3.1(5)

Poised to carry out more measurements when CARIBU is back online
Precision Branching Ratio Measurements of Long-lived Fission Products

→ Many long-lived fission products measured in 60s and 70s have high uncertainties on decay branching ratios

→ Implant mass-separated radioactive ion beam on thin carbon foil at CARIBU (ANL)

Radioactive ions implanted on a thin carbon foil at CARIBU

Decay measurement
→ β detection and γ-ray spectroscopy at TAMU

→ 156Eu strongest γ-ray intensities have ~10% uncertainties

→ Isotope of interest measured at TAMU

156Nd 5.5s

156Pm 26.7s

156Sm 9.4h

156Eu 15.2d

156Gd stable

156Sm

Sample harvesting
We Collected High-quality Data for ^{156}Eu

- Data collected with precisely calibrated β-γ coincidence detection setup

- Data collected during 7 days

With our technique we were able to improve ^{156}Eu decay data and reach sub-1% precision!

- Comparison of current (NNDC) evaluated data with our results for γ-ray branching ratios
We publicize our results at workshops, conferences, reviews:
- Independent Review in November 2020

Publications:
K. Siegl, K. Kolos, N. D. Scielzo et al. “Beta-decay half-lives of 134,134mSb and their isomeric yield ratio produced by the spontaneous fission of 252Cf” PRC 98, 054307 (2018)

K. Kolos, A. M. Hennessy, N. D. Scielzo et al. “New approach to precisely measure γ-ray intensities for long-lived fission products, with results for the decay of 95Zr” submitted to NIM A (2020)

+ Working on publication of 156Eu results (M. Bencomo)
+ More from CPT measurements

Working with graduate students:
- Kevin Siegl (Notre Dame), B. Champine and Tyler Nagel (UC Berkeley), A. Hennessy and E. Heckmaier (UC Irvine), Erin Good (LSU), Benjamin Schroeder (TAMU)

Welcoming new collaborations!

→ More experiments to come: isomeric-to-g.s. with the CPT and precision decay studies of long-lived FP branching ratios
Thank you!