²³⁶Np/²³⁶Pu production via the ²³⁵U(d,n) and ²³⁸U(p,3n) channels #### Michael Fassbender Chemistry Division Los Alamos National Laboratory ### Andrew Voyles¹ Lee Bernstein^{1,2} ¹ Department of Nuclear Engineering University of California, Berkeley Nuclear Science Division Lawrence Berkeley National Laboratory ### Isotope Dilution Mass Spectrometry: Standard Reference Material ²³⁶Np - Neptunium-236g ($t_{1/2}$ =1.5X10⁵ a) is used for IDMS determination of ²³⁷Np ($t_{1/2}$ =2.14X10⁶ a). - ²³⁷Np co-production has to be minimal! - It is neither anthropogenic nor primordial in occurrence and can thus function as an isotope dilution tracer. - Current world-wide ²³⁶Np stockpile limited to **10's of μg** of material. - U.S. interagency **Np working group*** (currently 10 members) formed in August 2015 to coordinate Np production R&D and address metrology community needs and purity requirements. - ²³⁶Np is **an NSAC-I (2015)** recommended isotope associated with "research opportunities in the physical sciences and engineering [..] where a shortage [..] is a challenge" - ²³⁶Np is on the **DHS "High Priority**" List for future funding. - Data for production is extremely sparse! ^{*}SM Jerome, K Carney, R Essex, ME Fassbender, S Goldberg, M Kinlaw, SP LaMont, D Mackney, JJ Morrison, FM Nortier, Reference materials for neptunium determination, *Applied Radiation and Isotopes*, 126 (2017) 44-48. ### Measurements at the LBNL 88-Inch cyclotron: "thick-target" ²³⁵U(d,n)^{236m}Np and "thin target" ²³⁸U(p,3n)^{236m}Np cross sections Beam profile measured Using GAFChromic film The ²³⁵U sample was "overfilled" with beam Stacked Target Holder HPGe counter ## Post-irradiation counting shows the 642.3 keV γ -ray from the decay of the ^{236m}Np isomeric state ($t_{1/2}$ =22.5 h) ### Quantification of ^{236g}Np / ²³⁷Np at LANL - Quantification of ^{236g}Np / ²³⁷Np production requires chemical workup and ICP-MS based analysis, due to lifetimes (t_{1/2}=1.5x10⁵ y, 2.14x10⁶ y, respectively). - The \approx 200 mg 93% ²³⁵U samples irradiated with 12 and 16 MeV deuterons underwent analysis at LANL in Spring 2019. - Optimal ^{236g}Np production rates (assuming a 550 mg/cm^{2 235}U target): - 17.01(8) pg/uA•hr for 16 MeV. - 1.78(1) pg/uA•hr for 12 MeV - ²³⁶Np:²³⁷Np production ratio (atom basis): - *1.05(38)* for 16 MeV - 1.55(18) for 12 MeV. - $No^{236}U$ produced! ²³⁶Pu from ^{236m}Np observed via α -spec - ²³⁸U(p,3n) targets awaiting ICP-MS #### LANL a-spect results | Sample | ²³⁶ Pu (fg) | ²³⁸ Pu (fg) | | |-------------------------|------------------------|------------------------|--| | Un-irradiated
Target | 2 - 2 |) | | | UO-1 | 75.7(5) | 96(2) | | | UO-2 | 305(2) | 630(8) | | ### Next Steps - Goals met so far: - Irradiation and γ-spectroscopy at LBNL - Chemical/Mass Spec analysis at LANL for ^{236g}Np Up to 40 ng can be made in 10 days @ 10 μA - Significant ²³⁷Np observed in the ²³⁵U targets - ~60% present in un-irradiated targets - Remainder co-produced from ²³⁸U(d,3n) - High-purity ²³⁵U targets needed for ²³⁵U(d, γ)²³⁷Np characterization - 99.94% targets fabricated by LLNL (Gharibyan) with an irradiation planned for 2-3/21 12 targets made by LLNL with ρR_{areal} from 80-160 mg/cm² | Target | Beam | Energy | ^{236m} Np
(γ-spec) | ^{236g} Np
(ICP-MS) | ²³⁶ Pu
(α-spec) | |--------------------------|------|-----------|--------------------------------|--------------------------------|-------------------------------| | ²³⁵ U (93%) | D | 12 MeV | ✓ | ✓ | ✓ | | ²³⁵ U (93%) | D | 16 MeV | ✓ | ✓ | ✓ | | natU | p | 16-25 MeV | √ | | | | ²³⁵ U (99.4%) | D | 14 MeV | Scheduled for Feb-Mar 2021 | | | ### Collaborators Andrew Voyles¹, Lee Bernstein^{1,2}, Michael Fassbender³, N. Gharibyan⁴, M.S. Basunia¹, Jon Batchelder¹, Andrew Gaunt³, Susan Hanson³, Ian Kolaja¹, Jon Morrell¹, Iain May³, N. Pettersen⁵, Melinda Wren³ ¹University of California – Berkeley Department of Nuclear Engineering ²Lawrence Berkeley National Laboratory ³Los Alamos National Laboratory ⁴Lawrence Livermore National Laboratory ⁵University of Oslo This work has been performed under the auspices of the U.S. Department of Energy by Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231. This research is also supported by the U.S. Department of Energy Isotope Program (Grant FOA LAB 17-1763).