236\text{Np}/236\text{Pu} production via the $^{235}\text{U}(d,n)$
and $^{238}\text{U}(p,3n)$ channels

Michael Fassbender
Chemistry Division
Los Alamos National Laboratory

Andrew Voyles1
Lee Bernstein1,2

1 Department of Nuclear Engineering
University of California, Berkeley

2 Nuclear Science Division
Lawrence Berkeley National Laboratory
Isotope Dilution Mass Spectrometry: Standard Reference Material ^{236}Np

- Neptunium-236g ($t_{1/2}=1.5\times10^5$ a) is used for IDMS determination of ^{237}Np ($t_{1/2}=2.14\times10^6$ a).
 - ^{237}Np co-production has to be minimal!
- It is neither anthropogenic nor primordial in occurrence and can thus function as an isotope dilution tracer.
- Current world-wide ^{236}Np stockpile limited to 10’s of μg of material.
- U.S. interagency Neptunium working group* (currently 10 members) formed in August 2015 to coordinate Np production R&D and address metrology community needs and purity requirements.
- ^{236}Np is an NSAC-I (2015) recommended isotope associated with “research opportunities in the physical sciences and engineering [...] where a shortage [...] is a challenge”
- ^{236}Np is on the DHS “High Priority” List for future funding.
- Data for production is extremely sparse!

Measurements at the LBNL 88-Inch cyclotron: “thick-target” $^{235}\text{U}(d,n)^{236m}\text{Np}$ and “thin target” $^{238}\text{U}(p,3n)^{236m}\text{Np}$ cross sections

Beam profile measured Using GAFChromic film

The ^{235}U sample was “overfilled” with beam

Stacked Target Holder

Deuterons @ 12, 16 MeV, Protons @ 27 MeV

HPGe counter
Post-irradiation counting shows the 642.3 keV γ-ray from the decay of the 236mNp isomeric state ($t_{1/2} = 22.5$ h)

- $159.4(52)$ fg 236mNp
- $89.98(20)$ fg/uAh·mg
- $554(21)$ fg 236mNp
- $9.265(3)$ fg/uAh·mg

Multiple channels observed via γ-spec

From 240Pu

Quantification of 236gNp / 237Np at LANL

- Quantification of 236gNp / 237Np production requires chemical workup and ICP-MS – based analysis, due to lifetimes ($t_{1/2}=1.5\times10^5$ y, 2.14×10^6 y, respectively).
- The ≈200 mg 93% 235U samples irradiated with 12 and 16 MeV deuterons underwent analysis at LANL in Spring 2019.
- **Optimal 236gNp production rates** (assuming a 550 mg/cm2 235U target):
 - $17.01(8)$ pg/uA•hr for 16 MeV.
 - $1.78(1)$ pg/uA•hr for 12 MeV.
- 236Np:237Np production ratio (atom basis):
 - $1.05(38)$ for 16 MeV
 - $1.55(18)$ for 12 MeV.

 No 236U produced!
- 236Pu from 236mNp observed via α-spec
- 238U(p,3n) targets awaiting ICP-MS

![ICP-MS data for (d,n) following U separation](image)

LANL α-spect results

<table>
<thead>
<tr>
<th>Sample</th>
<th>236Pu (fg)</th>
<th>238Pu (fg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-irradiated Target</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>UO-1</td>
<td>75.7(5)</td>
<td>96(2)</td>
</tr>
<tr>
<td>UO-2</td>
<td>305(2)</td>
<td>630(8)</td>
</tr>
</tbody>
</table>
Next Steps

- Goals met so far:
 - Irradiation and γ-spectroscopy at LBNL
 - Chemical/Mass Spec analysis at LANL for 236gNp
 - Up to 40 ng can be made in 10 days @ 10 µA
 - Significant 237Np observed in the 235U targets
 - ~60% present in un-irradiated targets
 - Remainder co-produced from 238U(d,3n)
 - High-purity 235U targets needed for 235U(d,γ)237Np characterization
 - 99.94% targets fabricated by LLNL (Gharibyan) with an irradiation planned for 2-3/21

<table>
<thead>
<tr>
<th>Target</th>
<th>Beam</th>
<th>Energy</th>
<th>236mNp (γ-spec)</th>
<th>236gNp (ICP-MS)</th>
<th>236Pu (α-spec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>235U (93%)</td>
<td>D</td>
<td>12 MeV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>235U (93%)</td>
<td>D</td>
<td>16 MeV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>natU</td>
<td>p</td>
<td>16-25 MeV</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235U (99.4%)</td>
<td>D</td>
<td>14 MeV</td>
<td>✓</td>
<td></td>
<td>Scheduled for Feb-Mar 2021</td>
</tr>
</tbody>
</table>
Andrew Voyles1, Lee Bernstein1,2, Michael Fassbender3, N. Gharibyan4, M.S. Basunia1, Jon Batchelder1, Andrew Gaunt3, Susan Hanson3, Ian Kolaja1, Jon Morrell1, Iain May3, N. Pettersen5, Melinda Wren3

1University of California – Berkeley Department of Nuclear Engineering
2Lawrence Berkeley National Laboratory
3Los Alamos National Laboratory
4Lawrence Livermore National Laboratory
5University of Oslo

This work has been performed under the auspices of the U.S. Department of Energy by Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231. This research is also supported by the U.S. Department of Energy Isotope Program (Grant FOA LAB 17-1763).