Fission Product Yield Measurements
Supporting Nuclear Forensics

Todd Bredeweg
Jason Harke
Judah Friese

Update for WANDA 2021
February 3, 2021
Why is nuclear physics / nuclear data important to the mission

The defining signature of a nuclear detonation is the presence of nuclear reaction products in the debris. These can be from
- Fission products (FP) from the fuel.
- Activation products (AP) from the fuel or nearby materials.
- Production/Destruction depends on fuel type and neutron spectrum.

The presence of nuclear reaction products in the debris is a defining signature of a nuclear detonation. These can be from:
- Fission products (FP) from the fuel.
- Activation products (AP) from the fuel or nearby materials.
- Production/Destruction depends on fuel type and neutron spectrum.
Why is nuclear physics / nuclear data important to the mission

The defining signature of a nuclear detonation is the presence of nuclear reaction products in the debris. These can be from

- Fission products (FP) from the fuel.
- Activation products (AP) from the fuel or nearby materials.
- Production/Destruction depends on fuel type and neutron spectrum.

ENDF Fission Chain Yields

ENDF Fission Chain Yields

Fission Product Yield (atoms/fission)

Fission Product Mass Number

The Chain Reaction

Activity (Bq)

Time (hours)

ENDF Fission Chain Yields

ENDF Fission Chain Yields

U-235 Thermal
U-235 Fission
U-235 14 MeV
Pu-239 Thermal
Pu-239 Fission
Pu-239 14 MeV
U-238 Fission
U-238 14 MeV

ENDF Fission Chain Yields

Activity (Bq)

Time (hours)

ENDF Fission Chain Yields

Activity (Bq)

Time (hours)

ENDF Fission Chain Yields

Activity (Bq)

Time (hours)
Why is nuclear physics / nuclear data important to the mission

The defining signature of a nuclear detonation is the presence of nuclear reaction products in the debris. These can be from

- Fission products (FP) from the fuel.
- Activation products (AP) from the fuel or nearby materials.
- Production/Destruction depends on fuel type and neutron spectrum.
Neutron Sources

Flattop (NCERC)
- Fast/fission Spectrum
- U(93) (17.7 Kg) & WG Pu (6 kg) cores / NatU Reflector (~1000 kg)
- Horizontal ("traverse") glory hole
- 10^{13} fissions/g on samples

Godiva IV (NCERC)
- Fast/fission neutron spectrum
- U(93) (65.5 kg, 1.5% Mo by weight)
- Super-Prompt Critical Operations
- Vertical glory hole for samples
- 1×10^{16} Total Fissions / burst

D-T Generator (PNNL)
- Thermo D711 neutron generator
- Low scatter facility at PNNL
- Max neutron flux of 1×10^9 n/cm2/s
Short-Lived Fission Product Yields (FASTER)

Fabricate High Quality Targets
Pulse Irradiate at NCERC
Acquire γ spectral data
Symmetric Temporal Spectral Analysis (LLNL)
Asymmetric Temporal Spectral Analysis (PNNL)
Evaluate Neutron Fluence & Fissions
Publish Fission Yields in Nuclear Data Sheets for NNDC

Very rich high-resolution spectroscopy allows us to unfold the time dependent behavior of FPs.
Cumulative Fission Product Yields (BETTER)

Fabricate Fission Chambers to Determine Absolute FPYs
Prepare High Quality Reference and Macro-foils
Irradiate Samples at NCERC and PNNL
Post-Irradiation Whole Foil γ-Counting
Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Reference foil
Brass anode
Macor® insulator

Prepare High Quality Reference and Macro-foils
Irradiate Samples at NCERC and PNNL
Post-Irradiation Whole Foil γ-Counting
Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR

Radiochemical Dissolution and Analysis
R-values ($R_{i/k}^j$) and Absolute FP Yields ($Y_{i/k}^j$)
Publish Results and Post in XFOR
Relative to Absolute Fission Yields

\[Y_{i,j,k} = \frac{(1 + \alpha_i)A_{i,j,k}}{\lambda_i \epsilon_i f_i N_f} \]

\[R_{l,j,k} = \left(\frac{A_{i,j,k}}{A_{25,th}^{i,j,k}} \right) = \left(\frac{Y_{i,j,k}}{Y_{25,th}^{i,j,k}} \right) \]
Relative to Absolute Fission Yields

\[
Y_{i,k}^{j,k} = \frac{1 + \alpha_i A_i^{j,k}}{\lambda_i \epsilon_i f_i N_f^{j,k}} \frac{A_i^{j,k}}{A_{99}^{j,k}} \frac{Y_i^{j,k}}{Y_{99}^{j,k}} \frac{Y_i^{25,th}}{Y_{99}^{25,th}}
\]

Gammas
Fission Products
Pulser

Radiochemistry
Fission Chamber Performance

Pulse height spectra from the Mark II fission chamber
• Benchtop testing with ^{252}Cf
• Testing at MIT with ^{235}U

Data taken with an Amp-Tek MCA8000D Pocket MCA

Data taken with a CAEN DT5781 Desktop MCA
The Ultraweld L20 is set up to weld two pieces of aluminum into a disc with a pocket diameter of 0.455”, and will effectively weld two pieces of 0.003” to 0.006” aluminum shim.
Plans for FY21

Cumulative FPYs at NCERC/Flattop:
- FC testing at the MIT Nuclear Reactor Laboratory
 Oct 27 - 29, 2020 – COMPLETED
- FC testing on Flattop at NCERC
 Nov 17 - 19, 2020 – CANCELED
- FC testing at the MIT Nuclear Reactor Laboratory
 Scheduled Mar 2 - 4, 2021
- FC testing on Flattop at NCERC
 Scheduled Mar 30 – Apr 1, 2021
- 235U foil irradiations on the Flattop critical assembly
 Scheduled April 17 - 14, 2021
 Parallel radiochemical analyses at LANL and PNNL
 Direct foil counting and radiochemical analyses to determine relative CFPYs.
 Collocated fission chambers to determine absolute CFPYs.

Short-Lived FPYs at NCERC/Godiva:
- 233U foil irradiations on the Godiva critical assembly
 Yet to be Scheduled
Acknowledgements

- J. Berger
- M.A. Boggs
- E.M. Bond
- S.M. Bowen
- T.A. Bredeweg
- J.A. Bounds
- G.H. Brooks, Jr.
- M.R. Cisneros
- D.L. Cox III
- T.E. Cutler
- D.E. Dry
- J.A. Favorite
- M.J. Gallegos
- A.J. Gaunt
- R.R. Gibson
- J.M. Goda
- M.E. Gooden
- S.K. Hanson
- D.K. Hayes
- L.A. Hudston
- K.R. Jackman
- M.R. James
- G. Lee
- R.C. Little
- M.R. MacInnes
- C. Margiotta
- I. May
- J.L. McGovern
- G.E. McKenzie IV
- D. Meininger
- D.K. Melton
- J.L. Miller
- A.D. Montoya
- W.L. Myers
- W.J. Oldham
- A.C. Olson
- S.D. Pacheco
- S.D. Reilly
- R.J. Rendon
- A.R. Roman
- J.R. Romero
- R.S. Rundberg
- R.G. Sanchez
- A.R. Schake
- N.C. Smythe
- M.C. White
- C.W. Wilkerson, Jr.
- J.M. Williams
- M.S. Wren

Plus many at LLNL, PNNL and NNSS

This work was funded in part by the Office of Defense Nuclear Nonproliferation Research and Development of the U.S. Department of Energy’s National Nuclear Security Administration.