Evaluation of Energy Dependent Fission Product Yields
Status Report 2021

T. Kawano, LANL

PIs: A. Sonzogni (BNL), L. Bernstein (LBNL), L. Wood (PNNL), and N. Schunck (LLNL)
Energy-Dependent FPY Project Funded by NA22

Joint effort by 5 laboratories (LANL, BNL, LBNL, PNNL, and LLNL)

Recent Relevant Meetings

- CSEWG (virtual, hosted by BNL, 11/30 – 12/3, 2020) FPY and covariance sessions
 - N. Schunck, R. Vogt, C. Sears, A. Mattera, A. Lovell, R. Lorek, E. Matthews

- IAEA Fission Yield CRP (virtual, hosted by IAEA, 8/31 – 9/4, 2020)

- EPJ Web of Conferences: International Workshop on Fission Product Yields
 - Vol.42 (2020), Santa Fe, New Mexico, USA, 9/30 – 10/4, 2019
 - All papers are available at:
 https://www.epj-conferences.org/articles/epjconf/abs/2020/18/contents/contents.html
LANL FPY model: Multi-Chance Fission

A. Lovell, et al. PRC to be published
BNL/NNDC Activities

- Searched and compiled all fission yield data in NSR and EXFOR, including non-journal references in the England & Rider report as well as the Robert Mills’ thesis.
- Developed JSON format for fission yields.
- Corrected 238U yields measured using activation technique with current decay data.
- Compiled all Isomeric Ratio data and compared with Madland-England model.
- Studied surrogate potential of inverse kinematics data from GANIL and GSI.
- Compared 238U yields with GEF calculations for outlier identification.
Fission Yield Measurements @ LBNL (FLUFFY)

Experimental Apparatus

- Fast Loading User Facility for Fission Yields at the LBNL 88-inch cyclotron transports samples between beam in < 1 second.
- $^{235,238}\text{U}$ data taken – 7/20
- $^{235}\text{U},^{239}\text{Pu}$ planned for 21

High-Energy Gammas

- Rapid transport times allow for short-lived high Q_β FP’s to be seen.
- Characterization of high-energy gammas from these products with relevance to safeguards and security.

Data Analysis

- FIER is used to model the irradiation scheme of the experiment in order to handle complex decay corrections.
- Minimization between FIER and experimental data allows simultaneous determination of FPY, $t_{1/2}$, BR, and I_γ’s.
Independent FPY Measurements @ PNNL

Looking at energy loss in MeV-cm²/mg for improved Z discrimination

- Fitting low-order polynomial to energy-normalized tail of the areal density stopping power
- Strong nuclear recoils are a challenge; exploring methods of generalizing track data for identification

Machine-learning based Bragg curve identification

- Initial model has shown promising results
- Generating significantly larger data set now
- Working with ML experts at PNNL on using “semi-supervised” learning methods to mix simulation and experimental data

Areal density stopping power for 10 fission TPC tracks
Particle number projection gives $Y(Z,A)$ as a function of neutron energy

- Angular momentum projection techniques predict spin distributions consistent with FF deformations
- Initial FREYA calculations suggest visible impact in photon multiplicities

Predictions from microscopic results can provide guidance to improve phenomenological models built in statistical reaction codes