Evaluation of Energy Dependent Fission Product Yields

Status Report 2021

T. Kawano, LANL

PIs: A. Sonzogni (BNL), L. Bernstein (LBNL), L. Wood (PNNL), and N. Schunck (LLNL)

Energy-Dependent FPY Project Funded by NA22

Joint effort by 5 laboratories (LANL, BNL, LBNL, PNNL, and LLNL)

Recent Relevant Meetings

- CSEWG (virtual, hosted by BNL, 11/30 12/3, 2020) FPY and covariance sessions
 - N. Schunck, R. Vogt, C. Sears, A. Mattera, A. Lovell, R. Lorek, E. Matthews
- IAEA Fission Yield CRP (virtual, hosted by IAEA, 8/31 9/4, 2020)
 - Meeting report, INDC-NDS-0817, prepared by T. Kawano, B. Pritychenko, R. Vogt, et al.
- EPJ Web of Conferences: International Workshop on Fission Product Yields
 - Vol.42 (2020), Santa Fe, New Mexico, USA, 9/30 10/4, 2019
 - All papers are available at:

https://www.epj-conferences.org/articles/epjconf/abs/2020/18/contents/contents.html

LANL FPY model: Multi-Chance Fission

A. Lovell, et al. PRC to be published

Slide 3

BNL/NNDC Activities

- Searched and compiled all fission yield data in NSR and EXFOR, including nonjournal references in the England & Rider report as well as the Robert Mills' thesis.
- Developed JSON format for fission yields.
- Corrected ²³⁸U yields measured using activation technique with current decay data.
- Compiled all Isomeric Ratio data and compared with Madland-England model.
- Studied surrogate potential of inverse kinematics data from GANIL and GSI.
- Compared ²³⁸U yields with GEF calculations for outlier identification.

Fission Fragment

Comparison of Madland model and Experimental Isomeric Yield Ratios

for neutron induced fission En <3 MeV

R (model)/ R (experimental)

0.8

Fission Yield Measurements @ LBNL (FLUFFY)

Experimental Apparatus

- Fast Loading User
 Facility for Fission
 Yields at the LBNL 88inch cyclotron transports
 samples between beam in
 < 1 second.
- 235,238 U data taken -7/20
- ²³⁵U,²³⁹Pu planned for 21

High-Energy Gammas

- Rapid transport times allow for short-lived high Q_{β} FP's to be seen.
- Characterization of high-energy gammas from these products with relevance to safeguards and security.

Data Analysis

- FIER is used to model the irradiation scheme of the experiment in order to handle complex decay corrections.
- Minimization between FIER and experimental data allows simultaneous determination of FPY, $t_{1/2}$, BR, and I_{γ} 's.

Independent FPY Measurements @ PNNL

Looking at energy loss in MeV-cm²/mg for improved Z discrimination

- Fitting low-order polynomial to energy-normalized tail of the areal density stopping power
- Strong nuclear recoils are a challenge; exploring methods of generalizing track data for identification

Machine-learning based Bragg curve identification

- Initial model has shown promising results
- Generating significantly larger data set now
- Working with ML experts at PNNL on using "semisupervised" learning methods to mix simulation and experimental data

Areal density stopping power for 10 fissionTPC tracks

National Nuclear Security Administration

LLNL Activities

Particle number projection gives Y(Z,A) as a function of neutron energy

- Angular momentum projection techniques predict spin distributions consistent with FF deformations
- Initial FREYA calculations suggest visible impact in photon multiplicities

Predictions from microscopic results can provide guidance to improve phenomenological models built in statistical reaction codes

