

WANDA 2021

FISSION PRODUCT YIELD MEASUREMENTS USING ²⁵²CF SPONTANEOUS FISSION AND NEUTRON-INDUCED FISSION ON ACTINIDE TARGETS AT CARIBU

GUY SAVARD ARGONNE NATIONAL LABORATORY

NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

FISSION FRAGMENT YIELD INFORMATION

- Fission produces hundreds of neutron-rich fission fragments. These isotopes have different lifetimes and chemical properties
- The fission fragment distribution experimental information is mostly obtained on longerlived isotopes through decay measurements. Yield for shorter-lived isotopes is mostly from modeling to reproduce the measurement on longer-lived isotopes.
- Quantitative knowledge of the decay properties of these isotopes is critical for most of these measurements.
- This data is at best unreliable ... we have a number of projects using CARIBU to improve this information on medium and shorter-lived isotopes to support the measurement techniques based on decay radiation detection (see earlier talks by K. Kolos and F. Kondev), but this is not the topic of this talk.
- We have developed a new approach for these measurements that works by detecting isobarically selected ions to directly determine the yield. This technique is essentially independent from the chemical properties of the isotope and can be applied to isotopes with half-life down to ~ 25 ms.

²⁵²CF FISSION FRAGMENT YIELD TABLES SHOW SYSTEMATIC INCONSISTENCIES

	E&R	E&R	JEFF 3.1	ratio		E&R	E&R	JEFF 3.1	
isotope	lifetime	direct	direct yield		isotope	lifetime	direct	direct yield	
		yield (%)	(%)				yield (%)	(%)	
75Ge	1.380h	1.48E-07	3.36E-07	0.44	99Mo	2.748d	0.00114	0.00306	
76Ge	stable	1.15E-05	2.97E-05	0.39	100Mo	stable	0.0148	0.028806	
77Ge	11.30h	6.94E-05	0.00015	0.46	101Mo	14.6 m	0.0893	0.18531	
78Ge	1.45 h	0.000621	0.000866	0.72	102Mo	11.3 m	0.464	0.46562	
79Ge	19.1s	0.00174	0.000338	5.15	103Mo	1.13 m	1.47	0.75505	
80Ge	29.5 s	0.00291	0.00585	0.50	104Mo	60 s	2.83	2.7141	
81Ge	7.6 s	0.0046	0.005643	0.82	106Mo	8.4 s	3.47	4.3787	
82Ge	4.6 s	0.00539	0.006424	0.84	107Mo	3.5 s	2.01	1.1969	
83Ge	1.9 s	0.00639	0.002605	2.45	108Mo	1.5 s	0.667	0.20928	
84Ge	1.2 s	0.0024	0.000898	2.43	109Mo	1.41 s	0.148	0.017977	
					110Mo	2.77 s	0.0231	0.000733	
85Ge	0.250s	0.00106	8.36E-05	12.68	111Mo	0.466s	0.00142	2.42E-05	
86Ge	0.247s	0.000142	7.21E-06	19.71	112Mo	0.975s	5.34E-05	5.73E-07	
87Ge	0.134s	2.02E-05	2.82E-07	71.70	113Mo	#N/A	#N/A	8.82E-09	ľ
88Ge	0.129s	1.59E-06	7.72E-09	205.94	114Mo	0.377s	6.24E-09	1.27E-10	

- Spontaneous fission is probably where it is easiest to do measurements • but yet, we see significant differences between England & Rider and JEFF 3.1.
- Not unexpected since for the shorter-lived isotopes, i.e. $t_{1/2} < 1$ min, most • ENERGY Apparent National Laboratory is a information is indirect

CARIBU CALIFORNIUM RARE ISOTOPE BREEDER UPGRADE

MR-TOF MULTI-REFLECTION TIME-OF-FLIGHT MASS SEPARATOR

PHASE-IMAGING ION CYCLOTRON RESONANCE (PI-ICR) METHOD IN THE CPT PENNING TRAP SPECTROMETER

Originally developed off-line by S. Eliseev et al, PRL 110 (2013) 082501

We have demonstrated resolution of over 10,000,000 allowing to easily separate isomers

PI-ICR MASS SEPARATION

MR-TOF + PI-ICR BEAM OF A/Q = 150/2+

CARIBU BEAMS DELIVERED TO EXPERIMENTS SO FAR

All of these beams now available in the new lowbackground low-energy area (Area 1)

ION COUNTING ISOMER MEASUREMENTS: FISSION YIELD, EXCITATION ENERGY, ...

NEUTRON GENERATOR UPGRADE TO CARIBU

- Replace ²⁵²Cf source by neutron-induced fission on actinide foils. For the facility it provides
 - More reliable source of fission products
 - Operationally easier to maintain and operate
 - Higher fission yield feeding in the ¹³²8n region

SELECTED P-7LI OPTION FOR NUCARIBU

Low-energy cyclotron/linac

- 6 MeV compact proton accelerator (cyclotron or linac)
- Can obtain sufficient current and higher energy so can afford to put it off the platform (lose 150 keV in energy)
- Is the less expensive option
- Easier to bring in services since off of HV platform
- Space available
- CARIBU shutdown shorter since less work on platform

Selection process completed, contract will be awarded this week

STATUS

 CARIBU can provide pure, mass separated, low-energy beams of any fission product to various experimental stations ... no chemical limitations, essentially no lifetime limitations (t_{1/2} > 25 ms)

Note: next ATLAS/CARIBU PAC deadline is March 1 2021

- CARIBU currently using spontaneous fission of ²⁵²Cf to produce fission fragments but will be upgraded to use neutron-induced fission on thin actinide foils
- Currently completing the analysis of fission-product isomer-to-g.s. ratios measurement for ²⁵²Cf spontaneous fission
- CARIBU was off for a large part of CY2020 due to COVID-19 shutdown/restrictions but restarting now. Fission fragment branching ratios in ²⁵²Cf spontaneous fission will be measured in CY2021 using the ion counting method to resolve discrepancies between LANL and European tables.
- nuCARIBU project is started and installation of neutron-induced fission setup is expected in FY2022.
- Measurements on neutron-induced fission on ²³⁵U and other actinides using counting system developed for ²⁵²Cf will proceed in FY2023 and following years.

This work is a collaboration between ANL and LLNL, with co-PIs Guy Savard (ANL) and Nick Scielzo (LLNL).

