Neutron Scattering Cross Sections: \((n,n')\) \((n,\gamma)\) \((n,n'\gamma)\)

Jeff Vanhoy,
US Naval Academy, Annapolis, Maryland

Current Team Members

University of Kentucky
Yongchi Xiao, postdoc
Erin Peters, instructor
Steven Yates, prof

Univ Dallas
Sally Hicks, prof

Mississippi State
Kofi Assumin-Gyimah, gradstudent
Stephan Vajdic, gradstudent
Ben Crider, prof

US Naval Academy
Bijan Nichols, undergrad
Jeff Vanhoy, prof

- Lab Overview
- Where we are today
- Primary Projects
- Secondary Projects

Special thanks to Anthony Ramirez, currently @ LLNL.

Supported by U.S. DoE FY20/21 awards SC000056, SC0021175, SC0021243, SC0021424
University of Kentucky Accelerator Laboratory (UKAL)

- 7-MV single-ended Van de Graaff accelerator
- p, d, 3He and α beams
- pulsed and bunched beam:
 - $f = 1.875$ MHz and $\Delta t \sim 1$ ns
- primarily conducts neutron-induced reactions and scattering experiments

Basic Nuclear Science

- Nuclear structure via $(n,n'\gamma)$
 - Level Schemes and Transitions
 - Spectroscopic Information
 - DSAM Lifetimes

Applied Nuclear Science

- Cross section measurements
 - (n,n') - Elastic and inelastic cross sections
 - 23Na, 56Fe, 54Fe, 12C, natSi, natLi
 - $(n,n'\gamma)$ - γ-ray production cross sections
 - Level cross sections
- Detector development
UKAL Experimental Hall

- Neutron and γ-ray detection
 - time-of-flight (TOF) method to extract neutron energy spectrum
 - TOF gating also employed to reduce background neutrons and γ-rays
- Angular distribution and excitation function measurements

\[^3\text{H}(p,n)^3\text{He} \approx -0.76 \text{ MeV} \] (for En < 5 MeV)
\[^2\text{H}(d,n)^3\text{He} \approx 3.3 \text{ MeV} \] (for En = 5 – 8 MeV)

\[^{56}\text{Fe} \]
Today’s Status

- **DE-FOA-0002114 NDIAWG (2019)**
 - Collaboration is holding weekly mtgs
 - New DAQ quotes -- ready to order
 - COVID restrictions prevent major runs

<table>
<thead>
<tr>
<th>SC</th>
<th>University</th>
<th>Start</th>
<th>Funds Functional</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>21243</td>
<td>Univ Dallas</td>
<td>1 Sep 2020</td>
<td>Oct 2020</td>
<td>3 yr</td>
</tr>
<tr>
<td>21175</td>
<td>Mississippi State</td>
<td>1 Sep 2020</td>
<td>Oct 2020</td>
<td>1 yr resubmit for 2 & 3</td>
</tr>
<tr>
<td>00056</td>
<td>US Naval Acad</td>
<td>1 Sep 2020</td>
<td>Jan 2021</td>
<td>3yr</td>
</tr>
<tr>
<td>21424</td>
<td>Univ Kentucky</td>
<td>1 Dec 2020</td>
<td>waiting</td>
<td>1 yr resubmit for 2 & 3</td>
</tr>
</tbody>
</table>

- **Hired postdoc Yongchi Xiao**
 - Hired from other funds (started 1 Oct)
 - Learning/developing γ-ray data analysis procedures in ROOT for UnivKY DSAM style data
 - Responsible for on-site project mgmt & daq system

- **Recruited Students**
 - Undergrad: Bijan Nichols
 - Gradstudents: Kofi Assumin-Gyimah, Stephan Vajdic

- $^{110,111,112,114}\text{Cd}(n,\gamma)$ measurements at DANCE completed !

- **Lee Bernstein, LBL**
 - Perhaps sending students to help during summer.
Primary Projects

$^{12}\text{C}(n,n')$

4-6 additional angular distribution measurements are needed in the range 5-8 MeV to assist with resonance parameter analysis.

Angular distribution Legendre Analysis

Fig. 1. The ENDF8 [11] angle-integrated $^{12}\text{C}(n,n)$ cross sections; data are from previous UKAL measurements.

Fig. 2. The ENDF8 angle-integrated $^{12}\text{C}(n,n_1)$ cross section annotated with previous experimental measurements found in EXFOR. UKAL data are given by blackened circles.

→ Elastic agreement is very satisfying.

→ Describing (n,n_1) is difficult.
Primary Projects

\[^{7}\text{Li}(n,n_{k}) \text{ and } (n,n'\gamma) \]

We need isotopic samples to generate useful information.

Fig. 3. Measured / inferred \(^{7}\text{Li}(n,n_{k})\) cross sections from EXFOR compared to two R-matrix calculations. The position of the resonances are indicated along with the adopted levels of the \(^{8}\text{Li}\) compound nucleus from ENSDF.
Surprisingly few detailed neutron scattering data exist for ^{19}F. Industrial manufacturers of compact molten salt reactors employ FLiBe as a base material and have called for an increased understanding of its properties.

The $^{19}\text{F}(n,n'\gamma)$ reaction is of particular interest. The 89 ns isomer causes a lot of trouble for cross section measurements.
Secondary Projects (if we have time)

Sodium-23 is a component in
Measurements below 1.3 MeV.
More ang distrib for resonance information

Magnesium-24 is a component in
More ang distrib for resonance information

Iron-56, one of the most ubiquitous materials,
Possible addn’l measurements upon request.
Conversion of existing HE data to neutron emission spectra.

Conversion of Previously Measured Angular Distribution Data to Differential Cross Sections.
The list includes most major stable isotopes of the elements
Na, Fe, Ge, Se, Zr, Mo, Ru, Pd, Cd, Sn, Te, I, Xe, Ba, Ce, Nd, Sm, Gd, Dy,

Neutron capture.
DANCE @ LANL: pulsed n beam w BaF detectors – total emission energy
130,132,134,136Xe proposed
FIPPS @ ILL: continuous n beam w HPGe – detailed γ-ray emissions btw levels
$\text{CdTe}(n,\gamma)$ -- scheduled for Feb 2021
100Ru(n,γ) -- awaiting rescheduling
SUMMARY:
Much to do.
Have identified the students.
Waiting for UnivKY funds to arrive in order to pay postdoc & purchase DAQ.
Must travel to take data and efficiently collaborate.
Have completed proposed Cd measurements at LANL-DANCE.

END

Supported by U.S. DoE FY20/21 awards SC000056, SC0021175, SC0021243, SC0021424
New Postdoc, New Data Acquisition System

Until the DAQ system arrives, YX trying to use ROOT to fit "Kentucky data"
110,111Cd(n,γ) @ DANCE 14 days in Sept 2020

Step 0: Develop all corrections specific to the measurement.

Step 1: Convert to XS

Step 2: Extract γ-ray strength function

Kofi

Stephan