Official training reduction roadmap #### Roadmap as in the official document: https://science.osti.gov/hep/Community-Resources/Reports MDP roadmap there ## **Training Reduction Milestones** #### Formally we don't have yet Milestones to report on, we'll comment on them later | Milestone # | Description | Target | |-------------|--|-------------------| | Allle-M1 | Commissioning of QCD | May 2021 | | Allle-M2 | First Ultrasound based test | May 2021 | | Allle-M3 | First high-Cp cable fabrication | September
2021 | | Allle-M4 | First magnet test with QCD | September
2021 | | Allle-M5 | Results from High-Cp cable studies | December
2021 | | Allle-M6 | Optimized strand and cable FEM simulations | December
2021 | Continues for next years... https://science.osti.gov/hep/Community-Resources/Reports MDP roadmap there # Training reduction roadmap (as presented earlier) ## **High Cp-wire studies status** - New high-Cp material Gd₂O₂S obtained - Supposedly much higher Cp than Gd₂O₃ which was obtained earlier - Wires with both materials fabricated - Steps up to and including heat treatment completed - Further steps on hold - Testing has not been done yet - Possible schedule delay, trying to resolve the issue #### **High Cp-cable studies status** - Cu/Gd203 ribbons with ~30% of Gd203 powder and two different thicknesses were produced by Hyper Tech Research, Inc. - Wire and cable samples outfitted with these high-Cp ribbons, or tapes, were prepared and tested at FNAL for the Minimum Quench Energy (MQE). Gain values of wire wrapped with high-Cp ribbon and of cable outfitted with it as function of magnetic field for measurements The NbTi cable test results with high-Cp tape on both sides compares well with the wire wrapped with the ribbon. Then we can expect an MQE increase of ~50% in Nb₃Sn cable with a high-Cp tape as a core ### **High Cp-cable milestones** - M5 is in progress with MQE tests of wires and cables. Both NbTi and Nb3Sn used for these experiments since we are interested in relative effects of high-Cp tape. In a process of completing extensive MQE tests of a NbTi cable with distributed heat perturbation. In the plan by the deadline, tests of NbTi cable with local heat perturbation and Nb3Sn cable tests are included. - M3 will depend on whether Hypertech will be able to produce high-Cp tape, which can be wrapped around a cable. LDRD application sent for this R&D. If we do not get it, then it will be up to MDP to fund it. - M6: summer graduate students work was supposed to contribute to this part but with COVID19 it is not clear that we'll get any this coming summer. Still, we will try to meet the goals according to the roadmap. | Milestone # | Description | Target | |-------------|--|-------------------| | Allle-M1 | Commissioning of QCD | May 2021 | | Allle-M2 | First Ultrasound based test | May 2021 | | Allle-M3 | First high-Cp cable fabrication | September
2021 | | Allle-M4 | First magnet test with QCD | September
2021 | | Allle-M5 | Results from High-Cp cable studies | December
2021 | | Allle-M6 | Optimized strand and cable FEM simulations | December
2021 | #### QCD Quench Current-boosting Device is a capacitor-based device aiming to significantly increase magnet current at quench time and thus help reduce magnet training time - After designing it, assembly work in AD continues, all main parts available - The plan is to have the device at testing site in early January - A work on an important digital logic card is transferred to APS-TD but still supervised by AD engineers - It should be completed (fabricated) by January - Integration work to the power supply system is lead by T&I - Includes some upgrades (like test points) not part of the LDRD - Preparatory work runs in parallel to QCD - We expect to commission the device in March 2020 - Mirror magnet (for initial QCD testing) assembly in progress - All parts available (except a few small steel blocks under fabrication) - Assembly readiness review coming in December - The magnet is to be assembled by March 2020 and then tested #### Milestones - M1 and M4 are on track to be completed on-time - M2 is delayed due to general schedule changes for superconducting magnet testing; however we plan to have it done by October in a different configuration (mirror magnet) and continue studies on the subject | Milestone # | Description | Target | |-------------|--|-------------------| | Allle-M1 | Commissioning of QCD | May 2021 | | Allle-M2 | First Ultrasound based test | May 2021 | | Allle-M3 | First high-Cp cable fabrication | September
2021 | | Allle-M4 | First magnet test with QCD | September
2021 | | Allle-M5 | Results from High-Cp cable studies | December
2021 | | Allle-M6 | Optimized strand and cable FEM simulations | December
2021 | It is too early to engage regarding the remaining points and no clear delays foreseen | Allle-M7 | First CCT test with QCD | February
2022 | |-----------|--|-------------------| | Allle-M8 | High-Cp wire and tape optimized versions | May 2022 | | Allle-M9 | Fabrication of first coil with High-Cp conductor | September
2022 | | Allle-M10 | Design of a dedicated device/technique using vibrational methods | September
2022 | | Allle-M11 | Design of a "cable/stack" testing device and samples | January
2023 | | Allle-M12 | QCD preparations and test on a large magnet | February
2023 | | Allle-M13 | Fabrication of a "cable/stack" testing device | September
2023 | # **Spare** ### **Spare** Fig. 1. Left: Cu tapes with Gd₂O₃ inside, 30% of the cross section is Gd₂O₃ (courtesy of Hypertech). Right: Hypertech Sn-in-Tube Nb₃Sn wire with 48 regular Nb-Sn subelements and 13 high-C_p ones made of Cu/Gd₂O₃. Fig. 7. Schematic of the instrumentation used for NbTi Rutherford cable tests. Fig. 3. Example of superconducting wire sample wrapped with Hyper Tech high- C_p tape cut down to ~1 mm width, along half a turn of the specimen. Fig. 10. NbTi cable sample assembly for MQE test of standard Rutherford cable and cable outfitted with high- C_p tape.