Neutrino Mass Measurements with KATRIN

NSD Staff Meeting, February 9th 2021

Neutrino Parameters

- Precision measurements with oscillation: $\Theta_{12}, \Theta_{13}, \Theta_{23}, \Delta m_{12}^2, \Delta m_{23}^2$
- Upcoming oscillation measurements (subdominant matter effects): CP phase $e^{i\delta}$, ordering sign(Δm_{23}^2)
- Not accessible with oscillations: absolute mass scale, Dirac ($\nu \neq \bar{\nu}$) or Majorana ($\nu = \bar{\nu}, \alpha, \beta$)

Measured with KATRIN

Different Neutrino Mass Observables

Beta Decay Measurements

No model dependence (only kinematics)

Other kinematic limits [pdg]: •SN1987: $mv_e < 5.8 \text{ eV}$ • π -decay: $mv_{\mu} < 190 \text{ keV}$ • τ -decay: $mv_{\tau} < 18.2 \text{ MeV}$

KATRIN - KArlsruhe TRItium Neutrino Experiment

130 scientists in 20 institutions from 5 countries

Funding and support from: Helmholtz Association (HGF), Ministry for Education and Research BMBF (05A17PM3, 05A17PX3, 05A17VK2, and 05A17WO3), Helmholtz Alliance for Astroparticle Physics (HAP), and Helmholtz Young Investigator Group (VH-NG-1055) in Germany; Ministry of Education, Youth and Sport (CANAM-LM2011019), cooperation with the JINR Dubna (3+3 grants) 2017–2019 in the Czech Republic; and the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-AC02-05CH11231, and DE-SC0011091 in the United States.

KATRIN @LBL

Alan Poon

Rebecca Carney

Pranav Vaidhyanathan

Bjoern Lehnert

LBL / NSD contributions:

- Bayesian analysis of neutrino mass
- Electron energy loss function systematic
- Low level background counting
- Publication Committee

 Study detector upgrade options with Microsystems Lab (MSL), Physics Division

Experimental Setup

Focal Plane Detector

e- trajectories through different parts of the spectrometer have slightly different response functions

Focal plane detector:

- 148 pixel Si-pin detector
- Counting electrons which pass main spectrometer

Electron Gun

Electron gun:

- Mapping of analyzing plane with pulsed angular selected monoenergetic e⁻
- Understanding source systematics
 - In-situ monitoring of column density
 - Electron scattering

Focal plane detector:

- 148 pixel Si-pin detector
- Counting electrons which pass main spectrometer

Systematic: Electron Scattering

- Only $\approx 30\%$ of electron leave source unscattered
- · Literature knowledge of energy loss function not precise enough for final sensitivity
- Electron loss function measured in-situ with electron gun and novel ToF technique

Systematic: Electron Scattering

Systematic: Electron Scattering

Analysis Strategy

First dataset:

- April 10 2019 May 13 2019 (33 d)
- Reduced source activity (22%)
- 274 runs in data set, 27 HV set-points
- 2.5 h per run, alternating up and down

Model ingredients and systematics

Beta spectrum: • Multiple spectra from T₂, DT, HT Various final states units) $R_{\beta}(E,m^2(\nu_e))$ count rate (arb. 5 10 15 0 electron energy (keV) **Constant background** Time varying component Potential slope **Response function:** Transmission: B-fields Source density: Probability of scatter • Electron energy loss: If scatter occurs ٠ 1.0 чresponse function scatters 0.8 transmission 0.6 f(E-qU)

0.4

0.2

0.0

0

10

20

30

surplus energy E-qU (eV)

40

50

Past & Present

Past: Measuring neutrino mass with Kurie plot

Franz N. D. Kurie @ LBL ~1939

Today: Complex final state distribution of T₂ decay

-2

Relative Extrapolated Endpoint (eV)

0

0 **└**

-8

-6

First Results

Best fit of m_{β}^2 :

- $m_{\beta}^2 = -1.0^{+0.9}_{-1.1} \text{ eV}^2$
- Consistent with $m_{\beta}^2 = 0 \ \mathrm{eV}^2$ 19% probability to get same or smaller value

Uncertainty budget (m_{β}^2):

- Dominated by statistics
- Largest systematic from background

Squared neutrino mass values obtained from tritium β -decay in the period 1990-2019 100 Los Alamos Phys.Lett. B256 (1991) 105-111 Mainz Phys.Lett. B300 (1993) 210-216 Troitsk Phys.Lett. B350 (1995) 263-272 Mainz Eur.Phys.J. C40 (2005) 447-468 Tokyo Phys.Lett. B256 (1991) 105-111 China Chin.J.Nucl.Phys. 15 (1993) 261 Mainz Phys.Lett. B460 (1999) 219-226 Troitsk Phys. Rev. D84 (2011) 112003 Zurich Phys.Lett. B287 (1992) 381-388 LLNL Phys.Rev.Lett. 75 (1995) 3237-3240 Troitsk Phys Lett B460 (1999) 227-235 KATRIN 1st run: 22% Tritium activity - 23 days 50 0 • $m^{2}(\nu_{e}) c^{4} (eV^{2})$ 001-2000 2019 2 - 1 $m^{2}(v_{e}) c^{4} (eV^{2})$ 0 Mainz $m_{\beta} < 2 \text{ eV}$ -1 **KATRIN** Troitsk -150 -2 KATRIN 1st run: 22% Tritium activity - 23 days Mainz - **†** -3 -200 PDG 2019 Average Troitsk -250 1995 2000 2005 2010 2015 2020 1990 year

First KATRIN dataset:

- Statistics improved by x2
- Systematic improved by x6

Bayesian Analysis @LBL

- Bayesian analysis with flat prior on m_{β}^2 for comparison with other techniques
- Full posterior parameter correlations
- Yields similar results
- Straight forward limit setting with positive flat prior on m_{β}^2

0.0

0.5

Limit setting on m_{β} :

Feldman-Cousins: $m_{\beta} < 0.8 \text{ eV} (90\% \text{ CL})$

1.5

1.0

 m_{ν}^{2} (eV²)

______0.0

2.0

Recent Background Reduction

Spectrometer bake-out:

- Reduction in ²¹⁹Rn background
- Lower systematics form time varying background
- Performed end of 2019

Shifted Analysis Plane (SAP):

- Modify field configuration shifting analysis plain towards detector
- Reduced volume and Rydberg background (x2)
- Currently running in this configuration

Measurement Periods

(2019)

EPJ C

First tritium

operations EPJ C 80:264

(2020)

Conclusions & Outlook

KATRIN measures neutrino mass

 $m_{\beta} = \sqrt{\sum_{i} m_i^2 |U_{ei}|^2}$

- Complementary with Cosmology and Double Beta Decay
- · Currently only leading experiment (Future: Project8, ECHo, HOLMES)

Current best limit from first dataset

- m_β < 1.1 eV (90% CL)
- x2 improvement over previous limits
- · Statistics dominated, largest systematic from background

Optimizations performed last year:

- · Background reduction with new spectrometer configuration
- · Source plasma systematics reduced with new source configuration

Analysis of eV and keV sterile neutrinos

Bibliography:

- First operations: EPJC 80: 264 (2020)
- First results: PRL 123, 221802 (2019)
- Detailed analysis: <u>arXiv:2101.05253</u>
- Sterile neutrino search: <u>arXiv:2011.05087</u>
- Review of direct nu mass: <u>arXiv:2102.00594</u>
- · Second results: soon

Backup

Global Picture

Background in KATRIN

- **Signal:** e^{-} have $E \approx 0$ keV in analyzing plane
- Background: low energy e- in spectrometer volume can mimic signal (independent of qU)

Observed background 50x higher than designed

Two main components:

- 1. ²¹⁹Rn ($T_{1/2}$ = 4s) from getter material in pumps
 - Decays in spectrometer creating fast e⁻
 - Creates time varying background rate
- 2. Rydberg atoms from vessel walls
 - α decays spatter out neutral atoms in highly excited Rydberg states
 - Ionize in spectrometer creating low energy e⁻
 - Creates radial dependent background rate
- Changes of measurement and analysis largely mitigates impact on sensitivity

Project 8

Idea: measure frequency very precisely

CRES (Cyclotron Radiation Emission Spectroscopy) of $\beta\text{-decay}$ electrons

Ultimate plan: Use atomic tritium to reduce molecular final states

Status:

First measurement of T₂ spectrum with preliminary analysis

(meV) **23**

ECHo and HOLMES

Nu2020: Maurits Haverkort Mass measurements with Ho-163 [link]

Electron capture in ¹⁶³Ho:

- $T_{1/2} = 4570 \text{ yr}$
- Q-value ~2.83 keV

Technology:

- pixelated cryogenic bolometers (<100 mK)
- source = detector, calorimeter

