

Studying the gluon helicity distribution with jets with the STAR experiment

LBNL NUCLEAR SCIENCE DIVISION MEETING | 23 FEBRUARY 2021 | MARIA ŻUREK

GLUON HELICITY DISTRIBUTION

STAR spin program goal:

• Delineate the **spin structure of the proton** in terms of quarks and gluons and study the role of spin in QCD

Tool:

• **Strong interactions** in polarized proton-proton collisions (complementary with DIS measurements)

How do gluons contribute to the proton spin?

$$S = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G$$

Gluon helicity distribution $\ \Delta g(x,Q^2)$

 x - fraction of the proton momentum carried by the gluon
 Q² - momentum transfer scale

RHIC – POLARIZED PROTON COLLIDER

- The only polarized high-energy proton-proton collider
- Transverse and longitudinal polarization
- Polarized protons $\sqrt{s} = 62, 200, 500 \text{ GeV}$
- Alternating spin configurations bunch by bunch and fill by fill

Hard scattering processes with control of systematic effects

02/23/2021

LONGITUDINALLY POLARIZED DATASETS

Year and √s	STAR <i>L</i> [pb ⁻¹]
Longitudinal runs	
√s = 200 GeV	
2009	25
2015	52
√s = 500/510 GeV	
2009	10
2011	12
2012	82
2013	300

Run overview of the Relativistic Heavy Ion Collider https://www.rhichome.bnl.gov/RHIC/Runs/

The STAR Beam Use Request for Runs 19 and 20, STAR Collaboration

02/23/2021

SOLENOIDAL TRACKER AT RHIC

1. Time Projection Chamber + Magnetic Field $\Delta \phi = 2\pi$, $|\eta| < 1, 0.5$ T

• PID, tracking, vertex reconstruction

2. Electromagnetic Calorimeter $\Delta \phi = 2\pi, -1 < \eta < 2$ Barrel ($|\eta| < 1$) and Endcap (1 < $\eta < 2$)

Energy measurement, trigger

3. Time of Flight Barrel

 $\Delta \phi = 2\pi, |\eta| < 1$

• PID

4. Forward Meson Spectrometer

 $\Delta \phi = 2\pi, 2.6 < \eta < 4$

• Energy measurement, trigger

5. Vertex Position Detector Zero Degree Calorimeter Beam-Beam Counter

Relative luminosity and Minimum Bias trigger

Roman Pots

Characteristics

- Large acceptance (tracking and calorimetry)
- Good detector for jets
- Upgrades: iTPC, EPD, ETOF, Fwd Upgrade

SOLENOIDAL TRACKER AT RHIC

1. Time Projection Chamber + Magnetic Field $\Delta \phi = 2\pi$, $|\eta| < 1, 0.5$ T

• PID, tracking, vertex reconstruction

2. Electromagnetic Calorimeter $\Delta \phi = 2\pi, -1 < \eta < 2$ Barrel ($|\eta| < 1$) and Endcap ($1 < \eta < 2$)

Energy measurement, trigger

3. Time of Flight Barrel Δφ = 2π, |η| < 1 • PID

4. Forward Meson Spectrometer $\Delta \phi = 2\pi$, 2.6 < η < 4 • Energy measurement, trigger

5. Vertex Position Detector Zero Degree Calorimeter

Beam-Beam Counter

Relative luminosity and Minimum Bias trigger

Roman Pots

Characteristics

- Large acceptance (tracking and calorimetry)
- Good detector for jets
- Upgrades: iTPC, EPD, ETOF, Fwd Upgrade

HOW TO ACCESS ΔG?

At pp collider: leading order access to gluons $\rightarrow \Delta G/G$

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\Sigma \Delta f_a \otimes \Delta f_b \otimes \hat{\sigma} a_{LL}}{\Sigma f_a \otimes f_b \otimes \hat{\sigma}}$$

What are a_{LL} for these processes?

LO for illustration

Which processes dominate at RHIC?

Cross-section measurement to support the NLO pQCD interpretation of asymmetries

02/23/2021

M. Żurek – Gluon helicity distribution with jets – NSD Meeting

STATUS OF ΔG Precision A_{LL}

PRL 115 (2015) 9, 092002

1. A_{LL} positive for large p_T - **positive gluon polarization**

- 2. Included in DSSV and the NNPDF **PDF fits** (NLO)
- These data drive the constraints on ΔG in both fits
- Initial sensitivity to different x_g from different rapidity bins

Evidence for **positive gluon polarization** in the x range 0.05 < x < 0.2 and at $Q^2 = 10$ GeV²

Relative contributions of gluons with a given x probed in different jet $\boldsymbol{p}_{\scriptscriptstyle T}$ regions

STATUS OF ΔG

Impact of $\boldsymbol{A}_{_{LL}}$ from 2009 data on $\Delta \boldsymbol{G}$

 $0.20^{+0.06}_{-0.05}$, at 90% C.L., x > 0.05

STATUS OF ΔG

What's next?

Near-term improvements from STAR for $x > 10^{-2}$ Deep insight from future measurements at EIC at lower x

• Scaling violation in inclusive DIS: $g_1(x, Q^2)$

Anti-kT algorithm via FastJet

Cacciari, Salam, Soyez, Eur. Phys. J. C 72, 1896 (2012) Cacciari, Salam, Soyez, JHEP 04, 063 (2008)

PYTHIA + GEANT + Zero-bias events for embedding

Jets reconstructed at three levels:

- **Detector level:** detector response to stable particles (takes into consideration finite detector acceptance, efficiency and resolution effects)
- **Particle level:** complete set of stable color-neutral particles produced in the event
- **Parton level:** hard-scattered partons from Pythia event
 - Initial-state and final-state radiation associated with the process included
 - No partons from beam remnants and multiple parton interactions

JET RECONSTRUCTION

Underlying event correction

Improved method compared to 2009 results used from the 510 GeV 2012 data analysis STAR, PRD 100 (2019), 052005

• Jet-by-jet underlying event correction using off-axis cone method ALICE, PRD 91 (2015), 112012

Off-axis cones at $\pm \, \pi/2$ away in ϕ and at the same η

$$dp_T = \frac{1}{2}(\sigma_{\text{plus}} + \sigma_{\text{minus}}) \times A_{\text{jet}}$$

 σ - energy density, A – jet area

Example UE correction values for 2015 data: $p_T = 6 - 7.1$ GeV/c: avarage UE dp_T ~ 1 GeV/c $p_T = 26.8 - 31.6$ GeV/c: avarage UE dp_T ~ 0.7 GeV/c

Jets corrected back to parton level

- Detector jet p_T parton jet p_T correction values:
- (for 2015 data) between -0.2 0.9 GeV/c depending on the jet $\ensuremath{p_{\scriptscriptstyle T}}$ bin

Trigger bias and reconstruction efficiency

- Estimated using replicas from polarized NNPDF1.1 PDF set
- Corrections up to about 10% depending on the jet $\boldsymbol{p}_{_{T}}$ bin

DOUBLE-SPIN ASYMMETRY

Asymmetry calculation

$$A_{LL} = \frac{1}{P_B P_Y} \frac{(N_{++} + N_{--}) - R_3 (N_{+-} + N_{-+})}{(N_{++} + N_{--}) + R_3 (N_{+-} + N_{-+})}$$

 $N_{+/-}$ - number of produced jets N for four different beam helicity configurations

- P polarization (Y yellow, B blue beam), e. g. for 2015 data: P_B = 0.523 ± 0.016, P_Y = 0.565 ± 0.017 CNI Polarimetry Group, https://wiki.bnl.gov/rhicspin/Results
- R₃ relative luminosity calculated using hit information from the Vertex Position Detector (VPD)

$$R_{3} = \frac{L_{++} + L_{--}}{L_{+-} + L_{-+}} \qquad \xrightarrow{\text{Acceptance and efficiency}}_{\text{canceled}} \qquad R_{3} = \frac{N^{++} + N^{--}}{N^{+-} + N^{-+}}$$

• For 2015 data R_3 varies from 0.96 to 1.04 depending on the fill with the uncertainty of $\Delta R_3 \sim 4.5 \times 10^{-4}$ (Uncertainty similar to 2009 data)

INCLUSIVE JET A

The most precise 200 GeV dataset likely to **conclude the 200 GeV longitudinal program with jets.** Preliminary result on jet and dijet A₁₁ from STAR from 2015 data.

- Consistent with 2009 data, which provided first evidence for positive ΔG for x > 0.05 •
- Twice larger figure-of-merit (*L*P⁴) with improved systematics •
- Will significantly reduce uncertainty on gluon polarization for x > 0.05 once included in global fits

INCLUSIVE JET A_{LL}

The most precise 200 GeV dataset likely to conclude the 200 GeV longitudinal program with jets.
Preliminary result on jet and dijet A₁₁ from STAR from 2015 data.

- Consistent with 2009 data, which provided first evidence for positive ΔG for x > 0.05
- Twice larger figure-of-merit (*L*P⁴) with improved systematics
- Will significantly reduce uncertainty on gluon polarization for x > 0.05 once included in global fits

INCLUSIVE JET A_{LL}

The most precise 200 GeV dataset likely to conclude the 200 GeV longitudinal program with jets.
Preliminary result on jet and dijet A₁₁ from STAR from 2015 data.

- Consistent with 2009 data, which provided first evidence for positive ΔG for x > 0.05
- Twice larger figure-of-merit (*L*P⁴) with improved systematics
- Will significantly reduce uncertainty on gluon polarization for x > 0.05 once included in global fits

SINGLE-SPIN ASYMMETRIES

Parity violating single-spin asymmetries are expected to be negligibly small at 200 GeV

$$A_L \equiv \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

Substantial **unaccounted systematic effects** would easily dominate these A_L Observed asymmetries **vanish to within their statistical uncertainties**

• Consistent well with the expectation

DIJET MEASUREMENTS

- Di-jets give stricter constraints to underlying **partonic kinematics**
- May place better constraints on functional form of Δg(x)

$$\eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$
 $M = \sqrt{x_1 x_2 s}$ $|\cos \theta^*| = \tanh \left| \frac{\eta_3 - \eta_4}{2} \right|$ (LO)

Symmetric collisions

Asymmetric collisions

Forward jets probe lower values of x_g For large asymmetry, likely: 2 – gluon, 1 – quark

09/18/2018

Page 19

DIJETS AT 200 GEV

Towards higher precision at x > 0.05

- More-forward production **lower x down to 0.01**, $x_2 likely gluon$, $x_1 likely quark$
- Narrow ranges of initial state partonic momentum tested

JETS AT 510 GEV Towards smaller x and complementary probes

- Higher √s pushes sensitivity to lower x = 0.02
- Consistent results from both • energies

Further precision: Run 2013 \sqrt{s} = 510 GeV – x 3.2 statistics

110

SUMMARY AND OUTLOOK

1. Insight into **gluon polarization ΔG(x)** at STAR

• Possible through longitudinal double spin asymmetries of inclusive jets and di-jets

2. 2009 data at \sqrt{s} = 200 GeV PRL 115 (2015) 9, 092002 included in global perturbative QCD analysis provided **evidence for positive gluon polarization** for x > 0.05

3. New results on inclusive jets and dijets A_{μ} from 2015 dataset at 200 GeV

- The most precise 200 GeV dataset likely to conclude the 200 GeV longitudinal program with jets
- Among the most impactful results on ΔG(x) available before the Electron-Ion Collider will come online
- 4. Gluon polarization at **lower x** < 0.05
- Improvements from STAR at 510 GeV and more forward rapidity (up to $x = 10^{-2}$)
- Deep insight from future measurements at EIC

02/23/2021

MOTIVATION

Spin - unique probe to unravel the internal structure and QCD dynamics of nucleon

Partonic structure of hadronic matter

Parton distribution functions (PDFs):

- **Unpolarized: f(x)** Probability density for finding parton with momentum fraction x in the proton
- Helicity: Δf(x) Net density of partons with spin aligned with the longitudinally polarized nucleon
- Transversity: δf(x) Net density of partons with spin aligned with the transversely polarized nucleon

Transverse-momentum dependent PDFs

How do spin phenomena in QCD arise at the quark and gluon level?

JET CROSS-SECTIONS

• New measurement with improved analysis from STAR in progres

Dijet cross section Data: Phys. Rev. D 95 (2017) 71103 Theory: D. de Florian, et al., Nucl. Phys. B 539, 455 (1999) H. L. Lai, et al., Phys. Rev. D 82, 074024 (2010) STAR 2009 Di-jet Cross Section 10 Data d³ơ/dMdŋ₁dŋ₂ [μb/(GeV/c²)] E NLO pQCD CT10 + UEH **UEH Systematic Uncertainty** pp @ 1/s = 200 GeV Anti-k_T, R = 0.6, |η,,η_| < 0.8 10 L dt = 18.6 $pb^{-1} \pm 8.8\%$ (Data-Theory)/Theory

• Anti- k_{T} algorithm

30

20

• MC-driven UE correction

40

50

60

Di-jet Invariant Mass [GeV/c²]

70

Detector effects unfolded

Cross-section measurement support the **NLO pQCD** interpretation of asymmetries

90

100

DI-JETS MEASUREMENT

Towards smaller \boldsymbol{x}_{g} and complementary probes

- Di-jets give stricter constraints to underlying **partonic kinematics**
- May place better constraints on functional form of Δg(x)
- Much narrower ranges of initial state partonic momentum tested
- Different di-jet topologies enhances sensitivity of the data to selected x

²⁰¹⁵ data at 200 GeV (2x statistics)

02/23/2021

DI-JET MEASUREMENT

Towards smaller x_{g} and complementary probes

- Central di-jet measurement Run 2009 √s = 200 GeV (25 pb⁻¹): PRD 95 (2017), 071103
- Central di-jet measurement Run 2012 √s = 510 GeV (82 pb⁻¹): PRD 100 (2019), 052005
- Further precision: Run 2015 \sqrt{s} = 200 GeV x 2 statistics, Run 2013 \sqrt{s} = 510 GeV x 3.2 statistics

02/23/2021

M. Żurek – Gluon helicity distribution with jets – NSD Meeting

DIJET MEASUREMENT Impact on Δg(x)

• Influence of central and forward di-jets from 2009 data (25 pb⁻¹) \sqrt{s} = 200 GeV on DSSV calculations

GLUON HELICITY

Deep insight with EIC from longitudinally polarized data: Scaling violation in inclusive DIS: g₁(x, Q²)

Predictions for: Luminosity: 10 fb ⁻¹, Polarization: 70%, Efficiency: 50%

02/23/2021