Ovββ Search Results from One Tonne-Year of CUORE Data

OT

0vββ Search Results from One Tonne Year of CUORE Data

CUORE

Introduction to the CUORE Experiment
Data Taking
Events Reconstruction
Ονββ Decay Analysis
Results

0vββ Search Results from One Tonne-Year of CUORE Data 2

Physics goal

Double Beta Decay is a second order weak interaction, only directly observable in a few nuclei for which the single Beta Decay is suppressed or forbidden (even - even nuclei)

Experimental Signature: peak at the Q-value of BB decay spectrum

The discovery of \mathbf{0} \lor \boldsymbol{\beta} \boldsymbol{\beta} decay would demonstrate that lepton number is not a symmetry of nature and that neutrinos are Majorana particles.

> Currently the most practical way to address the question of Majorana neutrinos!

Why Tellurium?

¹³⁰Te is chosen for:

- High isotopic abundance (34.17%) allows the use of natural Tellurium
- ¹³⁰Te can be incorporated into TeO₂ crystals, which also serve as the detector material (high detection efficiency)
- Reproducible growth of high quality crystals
- Q-value of 2527.515 ± 0.013 keV in a region with low beta/gamma background

CUORE @ LNGS - ITALY

Laboratori Nazionali del Gran Sasso:

3600 meters water-equivalent deep Muons: $\sim 3x10^{-8}/(s \text{ cm}^2) \rightarrow 10^6$ less than above ground

Gammas: ~0.73/(s cm²) Neutrons: < 4x10⁻⁶/(s cm²)

0vββ Search Results from One Tonne-Year of CUORE Data 5

Cryogenic Underground Observatory for Rare Events

988 high purity ^{Nat}TeO₂ 5x5x5 cm³ crystals arranged in 19 towers with 13 floors with a total mass of 742 kg 984 active channels!

World-leading cryostat in size and power:

- ~15 tonnes (Pb, Cu and TeO₂) below 4 K, and 3 tonnes cooled to below 50 mK
- 4 µW cooling power at operating temperature of ~10 mK

Bolometric technique

A particle interaction in the absorber causes an increase in temperature, measured by a NTD Ge thermistor

C: absorber capacity △T: temperature variation △E: energy deposition G: thermal conductance τ: signal decay time

0vββ Search Results from One Tonne-Year of CUORE Data

Challenges

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2}{n_{\sigma}} \frac{N_A i\varepsilon}{A} f(\Delta E) \sqrt{\frac{Mt}{B\Delta E}}$$

Large exposure (mass x time)

- 988 TeO₂ crystals with isotopic abundance of 34.167% for a total mass 206 kg of active material
- foreseen 5 years of data taking

Achievements:

- 2 years of uninterrupted data taking
- high stability of the cryogenic apparatus
- more than 1 tonne-year of exposure accumulated

High energy resolution

- noise reduction techniques
- temperature stability
- fine tuning of detectors parameters to optimize the signal to noise ratio

-

Achievements:

- ᠵ 🛛 < 8 keV FWHM @ Qββ
- ongoing studies for vibrational and microphonic noise mitigation and decorrelation

Low background

- strict radiopurity selection on materials
- low background assembly environment
- passive shields from external and cryostat radioactivity

Achievements:

measured background index in agreement with the expectations

0vββ Search Results from One Tonne-Year of CUORE Data 8

Data taking

More than 1298 kg yr of raw exposure acquired (17 datasets)

Data unblinded in 2021 arXiv:2104.06906 1038.4 kg yr

Data published in PRL 124.122501 (2020) 372.5 kg yr

Data published in PRL 120.132501 (2018) 86.3 kg yr

Since 2019 we have been accumulating an average of 69 kg yr/month

Ονββ Search Results from One Tonne-Year of CUORE Data 9

Event reconstruction

0vββ Search Results from One Tonne-Year of CUORE Data 10

Coincidences

88% of $0\nu\beta\beta$ decay events deposit all of their energy in one crystal (source = detector)

When more than one bolometer fires in a small time window, the event is likely to be due to radioactive contaminations, muon-induced events, or other correlated detector noise.

We assign multiplicity and total energy to such events and select only the ones that do NOT have other signals in coincidence

 $0\nu\beta\beta$ Search Results from One Tonne-Year of CUORE Data 11

PULSE SHAPE DISCRIMINATION: PCA

- We adopt a new pulse shape discrimination method based on principal component analysis (PCA)
- For each channel in a dataset, treat the average pulse like it's a leading principal component and calculate a *reconstruction error*
- Define a reconstruction error for each event x using this principal component w:

$$RE = \sqrt{\sum_{i=1}^{n} \left(\mathbf{x}_{i} - (\mathbf{x} \cdot \mathbf{w})\mathbf{w}_{i}\right)^{2}}$$

 Normalize the RE vs energy and optimize a S/VB metric to obtain a cut

May 4 2021

Roger Huang

0vββ Search Results from One Tonne-Year of CUORE Data 12

Spectrum after selection

BASE CUTS: remove periods with excessive noise, events with multiple pulses, and channels failing processing ANTICOINCIDENCE CUT (AC): selecting only single hit events, with a 40 keV energy threshold, 5 ms time window PULSE SHAPE DISCRIMINATION (PSD): PCA-based method to cut remaining events with anomalous pulse shapes

Detector response and energy resolution

We fit the 2615 keV calibration peak for each channel with

- a) 3-Gaussian response function
- b) Multi-compton background
- c) Flat background
- d) 30 keV X-ray escape peak
- e) 30 keV X-ray coincidence peak

Results are scaled to background peaks to account for possible differences in response between calibration and physics data

We exclude channels with FWHM > 19 keV from this analysis

FWHM harmonic mean @ 2615keV (calibration) -> 7.78 keV

0vββ Search Results from One Tonne-Year of CUORE Data 14

1 Tonne-Year Analysis: Numbers

Parameters	Values
Number of datasets	15
Number of channels	~934 average per dataset
TeO ₂ exposure	1038.4 kg yr
¹³⁰ Te exposure	288 kg yr
FWHM at 2615 keV in calibration	(7.78 ± 0.03) keV
FWHM at $Q_{_{m etam eta}}$ in physics data	(7.8 ± 0.5) keV
Total analysis efficiency	(92.4 ± 0.2)%
Reconstruction efficiency	(96.418 ± 0.002)%
Anticoincidence efficiency	(99.3 ± 0.1)%
PSD efficiency	(96.4 ± 0.2)%
Containment efficiency	(88.35 ± 0.09)%

15

Blinding

The blinding algorithm takes a random fraction of the events from the ²⁰⁸Tl line and shift them around the Q_{ββ} and vice versa. The original energies remain encrypted until unblinding. The unblinding occurs only after the full analysis procedure has been fixed.

0vββ Search Results from One Tonne-Year of CUORE Data 16

$0\nu\beta\beta$ Fit Method

- Bayesian analysis based on MCMC method (BAT)
- Results on Γ_{n_v} obtained from a flat prior on non-negative rates
- Input parameters from analysis:
 - \circ Detector response function for each channel in each dataset
 - Resolution and energy bias scaling from calibration to physics data
 - Efficiency numbers
- Free parameters:
 - ο Γ_{ov} rate
 - \circ ⁶⁰Co peak rate, scaled for each dataset by the ⁶⁰Co lifetime
 - Background rate for each dataset, and a shared linear slope to the background
- Repeat fit with additional nuisance parameters to account for systematics
 - \circ Systematics have a 0.8% effect on our limit and best-fit value for Γ_{n_v}

ROI fit

Region Of Interest [2490,2575] keV

0vββ Search Results from One Tonne-Year of CUORE Data 18

Best Fit Value: Γ_{0y} = (0.9 ± 1.4) x 10⁻²⁶ yr⁻¹

m_{ββ} Limit

From the Bayesian 90% limit of T_{1/2} > 2.2 x 10²⁵ yr Using a current range of NME calculations, this corresponds to a limit on the neutrino effective Majorana mass of m_{BB} < (90-305) meV

Oscillation parameters from NUFIT 2020 are used. All limits are at 90% C.L. and 3σ uncertainty is shown on the inverted and normal hierarchy bands.

The sensitivity line corresponds to the one quoted in the CUORE 2017 EPJC sensitivity paper. The limits on Ge, Mo, Se and Xe come from Gerda (2020), CUPID-Mo (2021), CUPID-0 (2019) and KamLAND-Zen (2016) respectively.

0vββ Search Results from One Tonne-Year of CUORE Data 19

SENSITIVITY

Median 90% Exclusion Sensitivity: 2.8 x 10²⁵ yr

- Sensitivity calculated by generating 10⁴ toy experiments assuming no 0vββ signal
 - Poisson-fluctuate background events and ⁶⁰Co events, with rates taken from the actual fit to data
 - Fit each toy using the same $0\nu\beta\beta$ signal + background model we use on actual data
- 72% chance of obtaining a stronger limit than our actual result

0vββ Search Results from One Tonne-Year of CUORE Data 20

Comparison to Previous Result

	Actual Limit	Median Exclusion Sensitivity
Previous Result	T _{1/2} > 3.2 * 10 ²⁵ yr	T _{1/2} > 1.7 * 10 ²⁵ yr
This Result	T _{1/2} > 2.2 * 10 ²⁵ yr	T _{1/2} > 2.8 * 10 ²⁵ yr

Our new limit is weaker than our previous due to normal statistical fluctuations around $Q_{_{\beta\beta}}$, stemming from the re-analysis and the new data

Our median exclusion sensitivity shows a notable improvement with the new exposure

Summary

- CUORE has now exceeded 1 tonne year of exposure and continues to stably collect data, with an ultimate goal of 3 tonne-years of exposure before CUPID commissioning begins
- We observe no evidence of $0\nu\beta\beta$ decay of ¹³⁰Te with an analysis of 1038.4 kg yr of data
 - Bayesian 90% CI exclusion limit: $T_{1/2}$ > 2.2 x 10²⁵ yr
 - Frequentist 90% CI exclusion limit: $T_{1/2} > 2.6 \times 10^{25} \text{ yr}$
 - Effective Majorana mass limit: m_{ss} < (90-305) meV
- This is the highest sensitivity search for $0_{m{V}m{\beta}m{\beta}}$ decay of ¹³⁰Te to date
 - Median 90% exclusion sensitivity: $T_{1/2} > 2.8 \times 10^{25}$ yr
- Preprint of these results can be found at arXiv:2104.06906
- Look forward to other analyses from this data in the future!