

Precision assembly, examples from CERN projects

Composites workshop

29 February - 3 March 2016, LBNL

Antti Onnela

with contributions by Andrea Catinaccio, Neil Dixon, Corrado Gargiulo and Francisco Perez

CERN – Experimental Physics department – Detector Technologies group

https://conferences.lbl.gov/event/54/

Examples taken from the following projects:

- CMS Tracker
- ATLAS TRT
- ALICE Inner Tracking System upgrade
- ATLAS Micromegas (New Small Wheel upgrade)

CMS Tracker Outer Barrel

Contact person: Antti Onnela

CMS TOB, Tracker Outer Barrel

TOB "Rods"

This early development version of a "Rod" was made of carbon-fibre skins + plastic foam core, with the cooling pipe and metallic inserts embedded to the sandwich structure.

Module support inserts with over-thickness, machined to final dimensions in the assembly.

- \rightarrow Use machining to reach high final precision.
- → But, supporting the light-mass structure during machining very difficult.
- → Doable by additional supports, shims and clamps, but time-consuming (measurements needed) and operator dependent.
- → Can be done for few pieces, but not for series of tens or hundreds.

Purpose:

Support and cooling of Silicon detector modules. Module positioning to < 0.1 mm.

Silicon module

TOB "Rods"

Chosen manufacturing and assembly method: Produce "industrially manufacturable" components and assemble them with room-temperature gluing on high-precision jigs.

2. Capillary glue (Araldite 2020) added + room-temperature cure

Metallic inserts

Carbon fibre pieces in ~1 mm precision

113 pieces / rod frame

760 rod frames in total (688 needed + 72 spares) = 85880 pieces in total !

Industrial production of components

Industrial production of components

Water-jet cutting worked excellently, even with thin and brittle C-shape profiles of 0.9 mm wall-thickness

Assembly

Good tools, tested procedures and high-quality workmanship are essential.

Measurements

Mechanical precision vs. Alignment with Tracks

ATLAS TRT Barrel Support Structure

Contact persons: Andrea Catinaccio, Neil Dixon

ATLAS TRT Barrel Support Structure

Length ~1.5 m, Diam ~2.2 m. Mass with detectors ~700 kg.

Alignment of the End Frames

Measurements with a 3D measurement arm (Romer).

End Frames and Inner Cylinder aligned in a jig and attached with gap-filling glue and screws.

Control of the achieved precision

Photogrammetry measurements, Antje Behrens et al., CERN EDMS document 459653, 2004

- Measurement of 70 reference points in the two end frames
- Photogrammetry measurement precision 0.06 mm.
- Nominal distance between opposite end points 1464 mm, measured distances max +0.48 mm, min -0.91 mm.
- Rotation of end frames (best fit of all points): 0.019 mrad
- Relative displacement of the two end frames (best fit of all points) 140 um in horizontal direction, 20 um in vertical direction.

ALICE Inner Tracking System upgrade

Contact person: Corrado Gargiulo

Inner Barrel staves to layer configuration

The stave is positioned on the end wheels reference planes by connectors at both extremities that engage a ruby sphere fixed in the reference plane. The Stave position is then blocked with a screw.

Ruby sphere

End Wheel

A-side

Carbon peek

Inserts 2µm accuracy, tungsten carbide

C-side

End Wheel

Inner Barrel Stave

Space Frame: truss-like lightweight mechanical support structure based on composite material (carbon fibre).;

Cold Plate: a sheet of high-thermal conductivity carbon fibre with embedded polyimide cooling pipes, which is integrated with the Space Frame

- 2. Cooling pipes glued to the cold plate at room temperature
- 3. Space frame wound around the package + room temperature cure

and the second se

Production Process: parts separation

Cut and mould separation

~1.6 gram @290mm length

Part n#		MIN	MAX
		(mm)	(mm)
1	7	-0.062	0.062
1	11	-0.036	0.053
1	12	-0.084	0.133
1	13	-0.103	0.067
1	14	-0.056	0.065
1	15	-0.088	0.070
1	16	-0.060	0.060
1	17	-0.049	0.083
1	18	-0.028	0.035
1	20	-0.030	0.030
1	21	-0.039	0.039
1	23	-0.030	0.030
1	26	-0.040	0.040
17a	1	-0.054	0.054
17a	2	-0.088	0.088
18a	1	-0.055	0.055
19	1	-0.052	0.052
19a	1	-0.063	0.063
20	1	-0.062	0.062
20	2	-0.069	0.069
20a	1	-0.144	0.144
20a	2	-0.053	0.053
20b	1	-0.039	o.039
21b	1	N/A	∠ → N/A

IB Spaceframe&Coldplate planarity

Layout and curing process optimization: planarity achived ± 0,028 ÷ 0,040 mm

Planarity check of the coldplate where chips are glued

IB gluing connectors with Master jig

Inner Barrel stave mechanics is the assembly of

- CFRP Filament wound structure
- Carbon Peek connectors

The carbon peek connectors provide the precise position of the stave

Space Frame & Cooling Plate ALICE + Chips & Flexible Printer Circuit

Chips+FPC are glued to the carbon structure

Assembly: SF&CP + HIC Gluing

ATLAS Micromegas

Contact person: Francisco Perez

Micromega Drift Panel design

Micromega Drift Panel manufacture with vacuum tables

Lower Glass-fibre skin, honeycomb and alu frame assembled on the lower vacuum table. Upper Glass-fibre skin held and lowered on the

stack with the upper vacuum table.

To make high-precision Panels the Vacuum tables must be flat, rigid and 'porous' for vacuum. For handling the vacuum tables need to be light.

 \rightarrow Use of a sandwich composite construction.

Smaller size proto of a Vacuum table

Perforated Al honeycomb

Flatness results for proto Vacuum table (1300X600X60mm)

- Calculated < 20µm
- No T effect ΔT=4°C

- Measured < 10µm
- No T effect ΔT=7°C

Results used for the design of the final size vacuum tables 2500X1600X200mm.

Manufacture of large size Vacuum tables

Obtained geometrical quality of the Vacuum tables

Tables 1 and 2 Lower table on 3 points of support Upper table on 4 supports in corners. Parallelism \leq 100 µm

Complete set of Drift Panel assembly tooling

Drift Panel manufacture

Assembly of lower and upper part of a Drift Panel

Summary, some lessons

- A good way of producing high-precision assemblies is to use roomtemperature gluing in precision jigs.
 - Well suited for light-mass assemblies
 - Glue joints can allow (depending on the joint design and gap-thicknesses allowed) use of components which are less precise than the final assembly.
- Machining to final precision requires the object to be sufficiently strong and rigid to support the machining loads. Not obvious in light-mass assemblies. Can be possible with proper (adjustable) support jigs, but is complex and time-consuming. Can be ok for few pieces, less for bigger series.
- Develop, prototype and test the manufacturing and assembly methods early

 this needs to be an integral part of the design process early on.
 - Allow time for corrections and improvements in the manufacturing and assembly.
 - Warning: Often difficulties to scale-up from "home-made" prototypes to final "series production" done possibly in multiple sites, by different people, with logistic challenges, etc. Plan for such transitions and try to do them early enough...