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Nb,;Sn Results (collaboration with FNAL and HTR)
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Outline of the program (Revised Scope)

1. Cable and Conductor Magnetization, Field Error, and Drift

1.1 Measurement of Conductor and Cable Magnetization: Experimental Input for Field Error
Calculation

1.2 Magnetization Modelling
1.3 Magnetization, Field Error Decay, and Snap-Back
2. Transport Measurements on Cables; Stability, Current Sharing, and Quench

2.1 Measurement of Current Sharing, Stability, and Quench in Cables with Full Current
Excitation

2.2 Modelling of Stability, Current Sharing, and Quench in Cables
3. Modelling of Magnets and Coils

3.1 Calculation of Field Error and its Decay in HTS Prototype Magnets
3.1.1 Calculation of b; and b; Decay
3.1.2 Cables and Magnets for Measurement

3.2. Modelling HTS Magnets and Inserts: Contact Resistances, Quench, Strand Breakage
3.2.1 Modelling of Current Redistribution Following Strand Breakage
3.2.2 Modelling of Temperature Rise Time, Current Distribution

3.2.3 Cable-to-Cable Interface Resistance, R, in Response to Surface Condition:
3.2.3 Thermal Diffusion in a Cable Stack
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Driving Questions for OSU-GARD Program

Magnetization:

Q1: What is the size and influence of HTS and Nb;Sn cable magnetization on field error
in accelerator magnets?

Q2: Is it possible to develop precise analytic expressions for HTS cable magnetization that
can provide direct input to magnet field error calculation?

Q3: How does field cycling and the associated local field-in-the-windings influence HTS
magnetization and drift at injection?

Current Transport:
Q4: What is the present level of current sharing and stability in HTS cables?

Q5: How does current sharing and stability of HTS cables respond to (i) changes in
surface condition, (ii) changes in cooling mode, (iii) expected increases in conductor
performance (increases in J, and reductions in Cu/SC ratio)?

Q6: How does Lorentz-force loading influence HTS cable deformation and current
sharing?

Magnet Properties:

Q7: How is the protectability of HTS cables and magnets impacted by: (i) changes in
conductor surface condition, (ii) changes in cooling mode, (iii) expected increases in
conductor erformance (mcreases inJ, and reductlons in Cu/SC ratio)?
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Section |: Magnetization of
Conductors, Conductors in Cables

e Data for use in Modelling of field errors

e Models of magnetization to use for
modelling of field errors
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12 T Hall Probe Cable Magnetometer

* Measurement made by 4B
between sample and no sample

» Field generated by 12 T, liquid
cryogen free, RT bore magnet

» Cooling provided by varitemp
dewar
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M-H of CORC cable

Comparison to YBCO

tape and Nb;Sn

Cable volume normalized magnetization, M (kA/m)

Applied magnetic field, pytH (T)

Takeaway: CORC Cable Mag Characterized

Compared to Nb;Sn
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LBNL HTS (2212) subscale Magnetization of
Bi:2212 Cables

ASC2020-Wk1-LCOr4C-05

topped with new RC-06 res

Subscale coils allow fast-turnaround test of cable and
magnet-relevant technologies.
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Modelling CORC for
accelerator cycles Il
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Ques: So, can we make a model, predict

Magnetization fror_n CORC Model

Cable volume normalized magnetization, M (kA/m)
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Now, can we use this

model as a feed into the
FEM model to make b3
predictions?

Magnetization at Injection, Minj, KA/m
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Section Il: Cables: Contact Resistance,
Current Sharing, Stability, Quench

e Contact Resistance

e Current Sharing

e Quench
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Contact Resistance I: YBCO 10 stacks and
Roebel Cables IEEE Trans. Appl. Supercond. 30 (2020) 6600505

TABLE III

ICR AND PROCESSING OF COATED CONDUCTORS LAP JOINTS AT 77 K WITH ASC 2020 Wk2 LPOlF-O5

200 MPa OF TRANSVERSE PRESSURE

TABLE IV
ICR AND PROCESSING OF ROEBEL CABLE AT 77 K WITH 2.7 MPa OF
Sample Processing Thickness (pum) ICR (pQ-cmz) TRANSVERSE PRESSURE

As-received Native oxide 17076 + 5% .

Chrome ED 25+ 5 um 564 + 5% Sample Processing Théifnn)ess (fgg’;ﬁ) ﬁ;‘;ﬁ’;:;;';
Nickel ED 2545 pum 987 £ 5%

Silver ED 50+ 10 um 12+ 5% As-received Nativeoxide ~ 655+5%  89+5%
Nicklon 125+ 10 pm 94 £ 5% Chrome ED 25+5pum 7200 £ 5% 98 £ 5%
As-received w/ CNT tape 20-60 300 £+ 5% Cu—Cu 150°Cx 3 hr n/a 425+ 5% 5.8+5%
Cu—Cu pO, 240 °C x 6 hr n/a 634 + 5% 8.6+35%

NbTI

Contact Effi

(b) . 4 L ! I i !
10 0 50 100 150 200 250 300
el Curing Temperature, Tr (°C)
-
%‘ _ 300 f . ® Thiswork
] ° =  Ref.[5
: § 250 1 o A Ref. Ee%
EE £ o0 | ¢ Ref.[12]
£ )
IBPVPPRRSRS e 0 " & 10 YBCO Coated Conductor
160 r_'_.. . . ; ; : * Pﬂ,m.“m § 100 4 A
- Temperatwre (K) | 8 50 1 .
-, . . 0 v v v v v T T
Takeaway: Surface condition and processing (pressure, HT) 0 20 40 60 8 1200 120 140

key g ”7|2essure (MPa)



Roebel Cables
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Section lll: Magnet Modelling: Field Error, Current
Sharing, Thermal Sharing, Quench Evolution

e Field Error, using data and models
from Section |

e Current Sharing, integrating Models
(Multi-Scale Modelling) from Section Il

e Thermal Sharing and Quench Modelling

& | Department of Materials __
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Modelling of Field Errors in Magnets |

X. Wang, S. Prestemon, G.L. Sabbi, T. Shen, ATAP
Cory Myers (OSU), X. Wang, (LBNL) division, Lawrence Berkeley National Laboratory

(ICMC 2019 - work performed at LBNL)
CORC direct drop in replacement for e
Nb;Sn in HD3 -
Field errors are only somewhat larger Gy
than that of Nb-Sn - reason is that Ic of

CORC cables is 3 kA, that of Nb;Sn is 30 Sian
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If we make amp-turns equal at 15 T, we need 6 X higher Jc CORC cables
Can we correct for that by just multiplying magnetization by Amp turn ratio? No -
now we need the analvtic model we made above!



Modelling of Field Errors in Magnets ||

* OK, so why do we need model rather than just multiply Magnetization X 6?

» If we just multiply by 6 X, we move out from the red/black M-H curve of the
existing CORC to the yellow dashed line (a Huge increase!)

» But, the penetration field is also increased (6 X), which means that the real
magnetization at injection does not become large and negative, but large and
positive! (in this case)
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X. Wang, S. Prestemon, G.L. Sabbi, T. Shen, ATAP
division, Lawrence Berkeley National Laborator




Field error Results, HD3, but including time
decay via analytic model

It is possible to estimate the
drift of b3 with time based on
the models we have developed

e

First, use derived expressions.. &
—

1-virgin initial permeability, 0->B, |~|§
e
- B B, 9

4+ (B/p )| \Pr g

=)

2-15t shielding, B,->B ., &
[¢3]

M Yo 2
= 3
[4+ (%/p-)] e

Now insert M = M[1-Ln(t)]

The, insert into FEM model and
compute at any given time!
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Ongoing Magnet Level Modelling

Modelling HTS Magnets and Inserts: Contact Resistances, Quench,
Strand Breakage

3.2.1 Modelling of Current Redistribution Following Strand
Breakage

3.2.2 Modelling of Temperature Rise Time, Current Distribution

3.2.3 Cable-to-Cable Interface Resistance, R,., in Response to
Surface Condition:

3.2.3 Thermal Diffusion in a Cable Stack

<: Multi-Scale

Modelling

Large Scale — 7/
Fine Scale i w
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New Planned Upgrades

e OSU requested as part of HEP GARD Program Equipment for high current
studies of Cable -

- Support for personnel but not capital Equip

- However, as part of New APRA-E Program starting 2021 on High
Current cryogenic Cables for Electric Aircraft, OSU has new DC
power supply capacity in the pipeline

» Lab facilities move and Upgrade

New AC Loss Lab New Processing and HT lab

Sumption/Collings Evans Lab space: Shown below is only 4028. Nov 18, 2020

Heater register
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. Scale window window windo
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New Cryogen
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New Machines for Magnetization

* Installation of “Burst
Magnetization” Set up

» Using Present Coil set Approach

» Retrofit with Cryogenic
Hyperconductor Al Coils

e Measurements 4-20 K

* Field Amplitudes 100-300 mT

« Ramp rates 1-50 Hz
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microstructure and performance of Nb,Sn superconductors, Journal of Alloys and Compounds 857, 15 March 2021, 158270
X. Xu, M.D. Sumption, J. Lee, J. Rochester, X. Peng, ‘“Persistent compositions of non-stoichiometric compounds with low bulk diffusivity: A theory and
application to Nb;Sn superconductors”, Journal of Alloys and Compounds 845, 10 December 2020, 156182
J. Rochester, M. Ortino, X. Xu, X. Peng, and M. Sumption, “The Roles of Grain Boundary Refinement and Nano-Precipitates in Flux Pinning of APC
Nb,;Sn”, to be published in IEEE Trans Appl Supercond. 2021
J. Rochester, C. Myers, M. Sumption, T. Shen, M. Majoros, and E.W. Collings, “The Magnetization of Bi:1121 Rutherford Cables for Particle Accelerator
Applications”, to be published in IEEE Trans Appl Supercond. 2021
YBCO Coated Conductor Interlayer Electrical S. Xue, M.D. Sumption, and E.W. Collings, “Contact Resistance Measured from 77 K to 4 K under Applied
Pressures up to 9.4 Mpa”, Submitted to IEEE Trans. Appl. Supercond. 2020.

2021 and in draft
M Ortino, S Pfeiffer, T Baumgartner, M Sumption, J Bernardi, X Xu, M Eisterer, “Evolution of the superconducting properties from binary to ternary APC-
Nb,Sn wires”, Supercond. Sci. and Technol. 34 (2021) 20210301
M Majoros, C Kovacs, C Myers, M D Sumption, E W Collings, “Self-field CORC cable stability, current sharing, and quench measurements in liquid nitrogen
bath at 77 K”, manuscript in draft
M.D. Sumption, C. Myers, E.W. Collings, Influence of Magnetization Decay on field Errors in Accelerator Magnets, Manuscript in Draft
C. Myers, M.D. Sumption, E.W. Collings, S. Prestemon, G. Sabbi, and X. Wang, “Modeling of Field Error of CORC®-based Prototype Accelerator
Magnets”, manuscript in draft



Presentations (2019-present)

1. Invited: M. Sumption, C. Myers, C. Kovacs, D. Kun, M. Majoros, and E.W. Collings, “Studies of the Magnetization of HTS
cables Relevant to Particle Accelerator Applications”, Presented at EUCAS 2019, Glasgow, UK, Sept 2019

2. M. Sumption, D. Kun, M. Majoros, C. Kovacs, C. Myers, and E.W. Collings, “Measurements and Modelling of YBCO Cable for
various HTS cables”, Presented at the ICMC, Hartford CT, July 2019.

3. M. Sumption, C. Kovacs, C. Myers, M. Majoros, and E.W. Collings, “Magnetization of HTS Cables for Accelerator
Applications”, USMDP, FNAL, 16-18”, Jan 2019

4. M.D. Sumption, Magnetization of HTS Cables, LTSW Jan 2019

5. C. Myers, M. Sumption, E.W. Collings, J. DiMarco, S. Prestemon, G. Sabbi, T. Shen LG Fajardo, X. Wang, “Field Quality
Measurements of High-Temperature Superconducting Canted Cosine Theta Accelerator Magnets”, Presented at MT 26,
Vancouver, Canada, Sept 2019

6. C. Kovacs, M.D. Sumption, M. Majoros, and E.W. Collings, “Direct Measurement of Modified Interconductor Contact
Resistance Values in Coated Conductor Stacks and Roebel Cables, Presented at MT 26, Vancouver, Canada, Sept 2019

7. M. Majoros, M.D. Sumption, and E.W. Collings, “FEM modeling of stability and current sharing in Nb3Sn Rutherford cables”,
Presented at MT 26, Vancouver, Canada, Sept 2019

8. Invited: M.D. Sumption, C. Myers, C. Kovacs, and E.W. Collings, “Magnetization, Flux Penetration, and Drift of YBCO Cable
Segments Models and Measurements for Accelerator Magnet Applications”, Presented at MT 26, Vancouver, Canada, Sept
2019

9. M. Majoros, M.D. Sumption, and E.W. Collings, “Numerical modeling of stability and current sharing in Nb3Sn Rutherford
cables”, Presented at the ICMC, Hartford CT, July 2019.

10.C. Myers, M.D. Sumption, and E.W. Collings, “Suppression of Magnetization and Creep in High-temperature Superconducting
Cable by Magnetic Field Cycling”, Presented at the ICMC, Hartford CT, July 2019.

11. M. Majoros, C. Kovacs, M.D. Sumption, and E.W. Collings, “Modeling current sharing and protection in a coated conductor-
wound racetrack coil with various interlayer contact resistance values”, Presented at the ICMC, Hartford CT, July 2019.

12.C. Kovacs, M. Majoros, M.D. Sumption, and E.W. Collings, “Direct Measurement of Modified Interconductor Contact
Resistance Values in Coated Conductor Stacks and Roebel Cables”, Presented at the ICMC, Hartford CT, July 2019

13.C. Kovacs, M.D. Sumption, E. Barzi, S. Zlobin, “Assessment of current-sharing of fully-excited Nb3Sn Rutherford cable with
modified ICR at 4.2 K using a superconducting transformer”, Presented at the ICMC, Hartford CT, July 2019

14.C. Myers, S. Prestemon, G. Sabbi, X. Wang, M.D. Sumption, and E.W. Collings, “Modelling of Field Error and Field Error Drift
of CORC®-based Prototype Accelerator Magnets”, Presented at the ICMC, Hartford CT, July 2019

15.M.D. Sumption, “Magnetization and Field Error Measurement and Modelling for HTS Accelerator Magnets”, LTSW 2020
16.Feb 26-28, 2020, Berkeley CA



Recent Theses from this program and Students
Moving to Labs and in the Pipeline

o Xingchen Xu (2016): Prospects to Improve the Critical Current Density of
Superconducting Nb;Sn strands > Now FNAL

o Cory Myers (2020): The Influence of Microstructure and Nanostructure on
Magnetization and its Temporal Decay in Bi:2212 and YBCO
Superconductors at Low Temperatures - now LBNL

e Chris Kovacs (2019): Influence of Material Properties and Processing on
Stability and Protectability in Superconducting Cables and Composites -
to AFRL

« Fang Wan (2020): = ?

e Shengchen Xue - Taking over role of Kovacs

e Jacob Rochester - Portions of Role of Myers
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Expected Outcomes

(1) Measurements of cable magnetization and creep, improved understanding/contrg/
of drift and field error in HTS-HEP magnets

(2) Analytic expressions for HTS cable magnetization giving direct input to magnet
field error calculations

(3) Determine the Influence of Field Cycling and Local fields on Magnetization for
HTS Cables

(4) Quantification of Contact Resistance and Current Sharing in Present HTS cables \/

(5) Determination of Current Sharing and Quench Response to Surface Condition,
Cooling Mode, and Performance Increases ongoing

(6) Modelling of Lorentz force Loading on Cable Mechanical Deformation (local) and
Electrical Response

ongoing
(7) Exploration of Surface Condition, Cooling Mode, and Performance Increases on
Cable and Magnet Protectibility

ongoing
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