U.S. MAGNET DEVELOPMENT PROGRAM

Training Reduction

MDP Meeting March 4, 2021

Emanuela Barzi¹, Maxim Marchevsky², Stoyan Stoynev¹, Xi US Magnet Development Program ¹Fermi National Accelerator Laboratory

²Lawrence Berkeley National Laboratory

US Magnet Development Program

Content of the talk

Following planning of the current meeting those points are addressed (charge question numbers addressed will be shown in red over yellow):

- 1. Summarizing the current status of the R&D topic...
- 2. Discussion of the current or incoming (next 6 months) milestones can they be met?

The most recent update on the topic was in December

Official training reduction roadmap

Roadmap as in the official document:

https://science.osti.gov/hep/Community-Resources/Reports MDP roadmap there

Training Reduction Milestones

Formally we don't have yet Milestones to report on, we'll comment on them later

Milestone #	Description	Target
Allle-M1	Commissioning of QCD	May 2021
Allle-M2	First Ultrasound based test	May 2021
Allle-M3	First high-Cp cable fabrication	September 2021
Allle-M4	First magnet test with QCD	September 2021
Allle-M5	Results from High-Cp cable studies	December 2021
Allle-M6	Optimized strand and cable FEM simulations	December 2021

Continues for next years...

https://science.osti.gov/hep/Community-Resources/Reports MDP roadmap there

Training reduction roadmap (as presented last in 2020)

ENERGY Science 3/4/2021 In red border lines – independent funding

High Cp-wire studies status

- New high-Cp material Gd₂O₂S obtained
 - Supposedly much higher Cp than Gd₂O₃ which was obtained earlier
- Wires with both materials fabricated
- Steps up to and including heat treatment completed
- Further steps on hold
 - Testing has not been done yet
 - Possible schedule delay, trying to resolve the issue

More in a separate presentation

1a

High Cp-cable studies status

- Cu/Gd₂O₃ ribbons with ~30% of Gd₂O₃ powder and two different thicknesses were produced by Hyper Tech Research, Inc.
- Wire and cable samples outfitted with these high-Cp ribbons, or tapes, were prepared and tested at FNAL for the Minimum Quench Energy (MQE).
- The NbTi cable test results with high-Cp tape on both sides compares well with the wire wrapped with the ribbon.
- Nb₃Sn cable test results with high-Cp tape on both sides will be compared with Nb₃Sn wire outfitted with tape soldered to it
- Then we can expect an MQE increase of ~50% in Nb₃Sn cable with a high-Cp tape as a core
 More in a separate presentation

3/4/2021

Office of

ENERGY Science

Wire and cable MQE values as a function of magnetic field for measurements performed at 80% Ic.

Presented at ASC2020, sent for publication

High Cp-cable milestones

- M5 is in progress with MQE tests of wires and cable studies are performed with high-Cp tape Cu/Gd₂O₃.
 Both NbTi and Nb₃Sn used for these experiments since we are interested in relative effects of high-Cp tape.
 Completed extensive MQE tests of a NbTi cable with distributed heat perturbation. In the process of testing MQE of Nb₃Sn cable (with distributed heat perturbation). In the plan by the deadline, tests of NbTi cable with local heat perturbation are included.
- M3 : Hypertech is producing high-Cp tape with Cu and Gd₂O₂S. MQE tests will be performed on this tape to select most performing material.
- M6: summer graduate students work was supposed to contribute to this part but with COVID19 it is not clear that we'll get any this coming summer. Still, we will try to meet the goals according to the roadmap.

		Milestone #	Description	Target	
M/ithi	in 6 months	Allle-M1	Commissioning of QCD	May 2021	
VVILII		Allle-M2	First Ultrasound based test	May 2021	
	1	Allle-M3	First high-Cp cable fabrication	September	On track
	-			2021	Ontrack
	I	Allle-M4	First magnet test with QCD	September	
_				2021	
		Allle-M5	Results from High-Cp cable studies	December	
	-			2021	
		Allle-M6	Optimized strand and cable FEM simulations	December	
	-			2021	

3/4/2021

1a, 1c

QCD

Quench Current-boosting Device is a capacitor-based device aiming to significantly increase magnet current at quench time and thus help reduce magnet training time

- The power-part of the QCD to be tested at AD in early March (an explicit agreement with AD reached)
 - <u>to complete</u>: asking LDRD management for budget credit (from next FY) or refund of cut funds
- The control-part of the QCD is to be ready in late March, work in APS-TD
- Integration work at the power supply by end of March, work by T&I
 - Ongoing safety controls work
 - Ongoing integration planning (mechanical, electrical)
- We expect to ORC the device in early April 2020
- Mirror magnet (for initial QCD testing) assembly in progress
 - All parts available
 - Assembly readiness review made valuable recommendations
 - The magnet is being assembled (by end of March 2020)

QCD (2)

.S. DEPARTMENT OF

ENERGY Science

Office of

3/4/2021

The QCD is coming to its projected shape. The plan is to move it to IB1 in early March and start on-site work integration to the power supply.

Controls (logical structure) of the device is being implemented in parallel, till **end of March**. **ORC** steps are also being started, it can not finish before **mid-April**.

The **mirror magnet** is being assembled (end of March).

With this steps the **earliest start of the magnet test is mid-April**.

<u>However</u>

- a) We need more funding (>\$25,000 fully loaded) to continue with the plan
- b) we may not be able to test this FY in any case
- c) AUP test is starting in early June

10

Milestones

Meeting milestones?

- M1 is awaiting decision to be completed on-time (up to ORC), M4 is to be delayed depending on M1
- M2 is with a changed scope as no LARP magnet can be tested soon enough; we'll do initial testing in a mirror magnet test; it is arguably not what we planned for (so formally this milestone can not be met yet).

	Milestone #	Description	Target	
	Allle-M1	Commissioning of QCD	May 2021	Depends on funding (and up to ORC)
	Allle-M2	First Ultrasound based test	May 2021	Change of scope (original milestone out of reach)
Within 6 months	Allle-M3	First high-Cp cable fabrication	September 2021	On track
	Allle-M4	First magnet test with QCD	September 2021	Depends, likely after October
	Allle-M5	Results from High-Cp cable studies	December	
			2021	
	Allle-M6	Optimized strand and cable FEM simulations	December	
			2021	
	Allle-M7	First CCT test with QCD	February 2022	
It is too early to	Allle-M8	High-Cp wire and tape optimized versions	May 2022	
	Allle-M9	Fabrication of first coil with High-Cp conductor	September	
engage regarding			2022	
	Allle-M10	Design of a dedicated device/technique using vibrational methods	September	
the remaining points			2022	
	Allle-M11	Design of a "cable/stack" testing device and samples	January	
and no clear delays			2023	
forecon	Allle-M12	QCD preparations and test on a large magnet	February	
loreseen			2023	
	Allle-M13	Fabrication of a "cable/stack" testing device	September	
			2023	

We'll be addressing points 2 and 3 (of the charge) in the discussion section

Training Reduction Milestones

Fig. 1. Left: Cu tapes with Gd₂O₃ inside, 30% of the cross section is Gd₂O₃ (courtesy of Hypertech). Right: Hypertech Sn-in-Tube Nb3Sn wire with 48 regular Nb-Sn subelements and 13 high-Cp ones made of Cu/Gd2O3.

Fig. 7. Schematic of the instrumentation used for NbTi Rutherford cable tests.

Fig. 3. Example of superconducting wire sample wrapped with Hyper Tech high- C_p tape cut down to ~1 mm width, along half a turn of the specimen.

Fig. 10. NbTi cable sample assembly for MQE test of standard Rutherford cable and cable outfitted with high- C_p tape.

Presented at ASC2020, sent for publication